
49

From hack to elaborate technique - A survey on binary
rewriting

MATTHIAS WENZL, FH Technikum Wien, Austria
GEORG MERZDOVNIK, SBA Research, Austria
JOHANNA ULLRICH and EDGAR WEIPPL, SBA Research, Austria and CDL-SQI, TU Wien, Austria

Binary rewriting is changing the semantics of a program without having the source code at hand. It is used for
diverse purposes such as emulation (e.g., QEMU), optimization (e.g., DynInst), observation (e.g., Valgrind) and
hardening (e.g., Control flow integrity enforcement). This survey gives detailed insight into the development
and state-of-the-art in binary rewriting by reviewing 67 publications from 1966 up to 2018. Starting from these
publications we provide an in-depth investigation of the challenges and respective solutions to accomplish
binary rewriting. Based on our findings we establish a thorough categorization of binary rewriting approaches
with respect to their use-case, applied analysis technique, code-transformation method and code generation
techniques. We contribute a comprehensive mapping between binary rewriting tools, applied techniques and
their domain of application. Our findings emphasize that although much work has been done over the last
decades, most of the effort was put into improvements aiming at rewriting general purpose applications, but
ignoring other challenges like altering throughput-oriented programs, or software with real-time requirements,
that are often used in the emerging field of the Internet of Things. To the best of our knowledge, our survey is
the first comprehensive overview on the complete binary rewriting process.

CCS Concepts: • Software and its engineering → Software post-development issues; Automated static
analysis; Dynamic analysis; • Security and privacy→ Software and application security.

Additional Key Words and Phrases: Binary rewriting, Binary hardening, Static rewriting, Dynamic rewriting ,
Minimal-invasive, Full-translation, Reassembly

ACM Reference Format:
MatthiasWenzl, GeorgMerzdovnik, Johanna Ullrich, and EdgarWeippl. 2019. From hack to elaborate technique
- A survey on binary rewriting. ACM Comput. Surv. 52, 3, Article 49 (June 2019), 36 pages. https://doi.org/10.
1145/3316415

1 OVERVIEW
“Binary rewriting” describes the alteration of a compiled and possibly (dynamically) linked program
without having the source code at hand in such a way that the binary under investigation stays
executable [81]. Originally, binary rewriting was motivated by the need to change parts of a program
during execution (e.g., run-time patching on the PDP-1 in the 1960’s) [92]. Today, binary rewriting
has evolved from a hack [92] through a repeatable technique for special purposes like link-time
code optimization [5, 62] and performance optimization of win32 programs [112] to a plethora of
approaches with applications in multiple domains. Popular applications are:

We express our gratitude to our reviewers who greatly helped to improve the paper with their valuable remarks and
excavation of some early work references regarding binary rewriting.
Authors’ addresses: MatthiasWenzl, FH TechnikumWien, Hoechstaedplatz 6, Vienna, 1200, Austria, wenzl@technikum-wien.
at; Georg Merzdovnik, SBA Research, Favoritenstrasze 16, Vienna, 1040, Austria, gmerzdovnik@sba-research.org; Johanna
Ullrich; Edgar Weippl, SBA Research, Favoritenstrasze 16, Vienna, 1040, Austria, CDL-SQI, TU Wien, Austria, JUllrich@
sba-research.org, eweippl@sba-research.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in ACM Computing Surveys, https://doi.org/10.1145/3316415.

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

https://doi.org/10.1145/3316415
https://doi.org/10.1145/3316415
https://doi.org/10.1145/3316415

49:2 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

Emulation. An emulator is a software or a hardware component that mimics the behavior of a
platform on another platform1. During emulation, binary rewriting is used to translate requests and
the respective responses from one processor architecture to another as it is done in virtualization
software like QEMU [19]. Something similar is performed by Wang et al. [143] who use dynamic
binary translation to offload time-consuming parts of a program to a more powerful computation
node with a different processor architecture.

Observation. Observing programs during execution is the task of profiling and tracing tools
that embed their monitoring code into the binaries under observation, where the latter resides
in memory. They are used to find memory leaks (e.g., Valgrind [138]), monitor the adherence to
specification (e.g., Pebil [82]), or for reverse engineering of data structures (e.g, Howard [123]).

Optimization. In high availability environments, such as telecommunication networks, down
times have a major impact on service availability. Furthermore, the identification and optimization
of timing anomalies in shared memory multiprocessor systems, like a high number of cache faults
due to misalignment is of interest in high performance computing domains [86], where programs
tend to run over a long period. In such situations, binary rewriting is used for run-time patching,
as it is done by DynInst [25, 48], or Jennings and Poimboeuf [67].

Hardening. The absence of legacy build tools, build tool features, third party source code, or
vendor support, introduces the necessity of binary rewriting at post-compile and link time [102].
This is of special interest if the utilized build tool originally used to create the binary lacks features
such as modern exploit mitigation techniques. Specifically the insertion of stack canaries2 [41] or
address layout randomization [133]. Additional exploit aversion techniques applied at run-time,
like attack recognition, also fall in this category (e.g., Zhang et al. [156]).
Throughout this paper, we will give an in-depth overview on the development and state of the

art in the field of binary rewriting. After providing insights on the general approaches and their
operation in principle, as well as a publication time line on binary rewriting tools in Section 2,
we will start an in-depth investigation of the identified building blocks. Hereby, we will focus on
the base techniques enabling various binary rewriting schemes that can be found in the 67 tool
examined for this publication. Furthermore, will deal with the challenges and solutions of the
particular problems in the binary rewriting process starting from the analysis step addressed in
Section 3. Based on these insights, Section 4 contributes a detailed investigation of the current state
of the art in binary code transformation techniques on behalf of the tools utilizing them. Afterward,
Section 5 covers means to integrate the undertaken changes into the binary of investigation,
permanently, if desired. Based on these results, Section 6 provides a detailed categorization of the
investigated publications with respect to the findings in sections 3 to 5. Finally, Section 7 concludes
the paper.
To the best of our knowledge, this work is the first paper giving a comprehensive overview on

the techniques, challenges and solutions in the field of generic binary rewriting. In contrast, related
work focuses on special aspects or fields of application regarding binary rewriting.

Cifuentes and Malhotra [32] provide a comprehensive comparison of static and dynamic binary
alteration tools between 1987 and 1995. The authors advocate that intermediate representation will
be a key technique to develop competitive dynamic binary translation tools. Additionally, Larsen
et al. [79] conducted a survey on automated software diversity approaches, which when done
at post-compile or run-time utilize binary rewriting to apply security related augmentations to

1https://www.kb.nl/en/organisation/research-expertise/research-on-digitisation-and-digital-
preservation/emulation/what-is-emulation

2Stack canaries detect if someone tampered with a function’s return address [41].

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

A survey on binary rewriting 49:3

orig.

elf, pe,

co�,

etc.

binary stream

(instructions

& data)

Parsing Analysis Code Generation

altered

elf, pe,

co�,

etc.

(1) (2a&2b)

rewritten

primitives

(4)

Transformation

(3)

primitives

(instructions,

f(), var., etc.)

(a) Static

orig.

elf, pe,

co�,

etc.

load

analyse

next

instruction

transform

next

instruction

altered

elf, pe,

co�,

etc.

save

(1)

dynamic instrumenter

primitives

(instructions,

f(), var., etc.)

(2a&2b)

(3)

transformed

primitives

binary

generate

code

(4)

(4a)

(b) Dynamic

Fig. 1. Required steps to apply binary rewriting in principle.

software, such as adding stack canaries or implementing address layout randomization schemes. In
contrast, our paper focuses on binary rewriting techniques themselves rather than single application
domains. Within the context of this paper, software diversity would fall in the hardening domain. In
fact, binary analysis shares an intersection with binary rewriting when it comes to preparing steps
like disassembly and structural recovery. The work of Shoshitaishvili et al. [121] from 2016 gives an
in depth overview on the current challenges and resolving strategies when doing binary analysis
with automatic exploitation in mind. Andriesse et al. [8] did something similar, but with a focus
on comparing recent disassembler frameworks. The authors concluded that while function start
address detection is still not perfect, linear disassembly strategies are already able to deliver very
good results under the assumption that the binary under investigation has been compiled with a
recent compiler. Nanda and Chiueh [95] present a survey on virtualization techniques, including a
coarse description of instruction rewriting, which is used in emulation to translate binaries between
different processor architectures during run-time. In 2011, Hazelwood [59] conducted a survey
on dynamic binary rewriting techniques. Nevertheless, to the best of our knowledge our work
is the first to cover the whole process of binary rewriting from disassembly to code generation
covering static and dynamic approaches with respect to 67 publications between 1992 and 2018.
Furthermore, we provide a mapping between the base techniques enabling binary rewriting and
the reviewed disseminations implementing binary rewriting tools.

2 BINARY REWRITING FROM HIGH ORBIT
The process of Binary rewriting modifies a given compiled and possibly (dynamically) linked
program in a way that it remains executable without access to the source code for recompilation [81].
In general, binary rewriting can be classified into static and dynamic schemes. Static binary rewriting
approaches operate on the binary while it is stored in persistent memory. On the contrary, dynamic
binary rewriting is performed while the program of interest is executed.

2.1 The four steps to binary rewriting
Static and dynamic binary rewriting attempts can be split into four steps (see Fig. 1). First, the
rewriter hast to retrieve the right information from the binary under investigation (see Step 1:
Parsing). Subsequently, Step 2: Analysis performs binary analysis to recover the program’s structure
that has been lost during compilation and assembling. Step 3: Transformation uses the recovered
information to alter the binary according to the user’s requirements. Step 4: Code Generation

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

49:4 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

reintegrates the changes into the program. In the following, we provide an overview on the process
of binary rewriting with respect to static (see Section 2.2) and dynamic (see Section 2.3) approaches.

Step 1: Parsing. Independently of its actual implementation, each executable format consists of
administrative (e.g., section information) and payload data (e.g., instructions and global variables).
The focus of binary rewriting is in obtaining and manipulating the payload data. Unfortunately, this
information is usually scattered throughout the file in different ways. Furthermore, instructions
(when using CISC architectures) and variables are not present in a delimited form and it remains
unclear where one ends and a new one begins. Instead, instructions and global variables are present
as a raw binary stream, grouped into different sections. Moreover, binaries have no type information
stored with their (global) variables, thus the actual data type of a referenced address must be
recovered separately. Hence, the purpose of this step is to obtain the raw instruction stream from
the executable and pass it to a disassembler. Furthermore, the address ranges of the global variables
and the content of the data section are retrieved for further analysis. As will be discussed in
Section 2.3 and Section 2.2, mature solutions to solve step 1 exist. Therefore, we will focus on steps
2, 3 and 4 in Section 4 and Section 5.

Step 2: Analysis. The analysis step recovers the structure of a program’s source code. While most
of this structure is already lost during the compilation, assembling and linking process, stripping
binaries from symbols removes even more information like names, addresses and types. At the end
of step 2, the binary of interest is disassembled, the recovered instructions are grouped in functions,
identified variables are associated with an appropriate data type and a control flow graph (CFG)
has been generated.
Stripped binaries, which are the result of step 1, are agnostic towards high-level concepts like

functions, data types and even clearly separated instructions. Thus, all information that remains
before analysis is unstructured binary code placed at specific sections in an executable. Nevertheless,
since we are in step 2, the raw instruction stream as well as the global variable from the data sections
are already obtained from the binary of interest. Therefore, the analysis process is two-fold:

First, the raw instruction stream is dissected and decoded by the disassembler. At the end of this
step, each bit pattern identified as instruction is available as its assembler representation together
with its parameter, referenced memory addresses and location in the binary. By considering all
kinds of branch instructions within the raw binary stream, a control flow graph of the binary can
be generated. A control flow graph is a directed graph with the nodes made up of (discovered) basic
blocks. The graph’s edges identify the branch source to branch target relations [4]. Each basic block
consists of a series of instructions ending with a branch instruction. Considering the analysis step,
CFGs are a common data structure to store the analysis results.

Second, as much as a binary does not have an idea of data types and instruction boundaries, it is
also agnostic towards the concept of functions. Thus, it is the task of function recovery algorithms
to find and group series of instructions connected by branches to function blocks, as well as to
determine the function’s entry and exit points.

Step 3: Transformation. Once function boundaries and a control flow graph have been recovered,
the binary of interest is ready to be altered. Alterations can be done at instrumentation points.
Instrumentation points are user specified locations in a binary where (a) the control flow changes,
e.g., the rewriter wants to redirect the control flow to a new set of instructions; (b) instruction
changes can be applied, e.g., the rewriter wants to augment every function with certain profiling
code.
The amount and location of the instrumentation points are directly related with the general

binary rewriting approach, which can be either coarse or fine-grained. Coarse-grained approaches

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

A survey on binary rewriting 49:5

generally allow for persistent binary changes (executable on disk is changed), but only at branch
locations. In contrast, fine-grained attempts are able to alter every instruction in a binary at the
price of high overhead .

Step 4: Code Generation. The last step integrates the intended changes into the binary of interest
in such a way that it stays executable. In general, there are three possibilities to do so: (1) A new
section holding the changes is carved in the binary file of interest. This includes the need for
detours at instrumentation points making the new code reachable during execution. (2) A detour is
added during program execution making the new code reachable while the program executes, but
leaves the binary on disk in its original state. (3) An arbitrarily altered binary is fed to a commercial
off-the-shelf assembler that creates a completely new executable.

2.2 Static binary rewriting in principle
Static binary rewriting as shown in Fig. 1a operates on files stored in persistent memory. Therefore,
in step (1), retrieving a raw binary stream consisting only of instructions and global variables from
a given executable must be accomplished. However, the program’s instructions and global variables
of interest are likely scattered around the file in several sections interleaved with administrative
information. For example, the Executable and Linking File format ELF [152], commonly used in
modern Unix based operating systems, holds at least an ELF header table and a section header
table as auxiliary information, which are not of interest during disassembly (step (2)). The same
kind of administrative information is available in the Common Object File Format (COFF) [135],
used for example by Texas Instruments, or the Portable Executable (PE) [105], utilized by Microsoft.
Nevertheless, to accomplish step (1) a plethora of libraries such as BFD [129] as a part of the binutils
package are readily available to parse and convert an executable into a binary stream that can be
processed by a disassembler. The obtained binary stream is then fed into a disassembler (Fig. 1a (2a)
), returning a set of detected instructions and data together with address information. Afterwards,
structural recovery algorithms are used to build control flow graphs, extract function start addresses
and recover data types (Fig. 1a (2b)). The detected structures of interest are subsequently used as
input for one of the following static binary rewriting approaches (Fig. 1a (3)).

Direct. The oldest static binary rewriting scheme operates directly on the instructions of interest.
Although this approach works well when altering instructions of similar length and semantic
consequence3, in the worst case adding or removing instructions implies an update of all branch
targets [130].

Minimal-invasive. When utilizing this approach a new section is inserted into the binary holding
the intended instrumentation code. In order to reach this section, unconditional branches are
inserted at instrumentation points within the original program flow.

Full-translation. These schemes require the complete binary to be transformed into an interme-
diate representation allowing alterations on instruction granularity. Intermediate representations
in the domains of compilers, binary analysis, and binary rewriting are data structures that allow
for hardware architecture independent description of programs without loss of information [31].
The process of transforming a more detailed representation into a more abstract representation is
known as lifting [15] (E.g., lifting x86 instructions to LLVM’s intermediate representation.) .
Finally, the altered binaries must be reassembled and written to disk for the changes to take

effect (Fig. 1a (4)). When using minimal-invasive rewriting, the reassembled binaries differ only
at the instrumentation points and at the newly added section holding the instrumentation code

3When altering MIPS instructions, some introduce a required delay slot.

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

49:6 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

[126]

[72]

[82]

[139]

[96] [102][5]

[112]

[45][106]

[88]

[7]

[99]

[141]

[48] [46]

[71]

’08

[128]

’09

[125]

[137]

[145]

[144]

[24] [6]

[156] [17]
/ /

[130] [81] [33]
/ /

[54]

[1]
/ /

’66 ’97’96’95’92

[142]

[154]
/ /

[157]

[155]

[158]

[63]

’18’17’16’15’14’13’12’11’10’86 ’06
/ /

’04 ’05 ’07’00 ’03

Fig. 2. Timeline of publications presenting static binary rewriting tools spanning from 1966 to 2018. (The
publications [1, 46, 49, 156] present mixed approaches, therefore they are placed in both timelines.)

from the original binary. In contrast, a reassembled full-translation binary may have a completely
different layout, although only the same changes as in the minimal-invasive attempt might have
been made. This difference is caused by the semantic equivalence approach used in common lifters
for a detailed explanation of the problem and its consequences.
A timeline of publications regarding static binary rewriting approaches is depicted in Fig. 2.

Within the years 1966 to 1997, only few papers and tools concerning static binary rewriting were
published. The interest for this approach increased in 2001, was further raised in 2010 and peaked
in 2013.

2.3 Dynamic binary rewriting in principle
Dynamic binary rewriting performs the analysis and transformation operations during program
execution. In contrast to static binary rewriting, that executes all 4 steps in a row, dynamic binary
rewriting implements an iterative algorithm as shown in Fig. 1b.
Thus, upon the first step the application of interest is loaded into an instrumentation program

that is similar to a debugger, as it is able to monitor each executed instruction and accessed variable
(Fig. 1b (1)). This can be done using the PTRACE API under Linux [103],the application debugging
API under Windows [69], or a custom loader as it is done by Pin [84], or DynamoRIO [23]. During
execution, the binary is disassembled along the paths that are covered by its input data (see Fig. 1b
(2a, 2b)), hence obtaining the structures of interest at run-time. Just as in the static rewriting
approach, binary transformation is applied to the structures of interest (see Fig. 1b (3)), which in
turn have to be integrated into the program flow. Since it is hardly possible to disassemble the whole
binary within a single run (due to path coverage limitations), either only the alteration of covered
paths is of interest (e.g., [23, 48]), or techniques to improve the path coverage are applied [53].
Depending on the rewriter, program alteration is either temporary (see Fig. 1b (4)) or persistent
(see Fig. 1b (4,4a)).

While non-persistent alterations as performed by Valgrind [98] only suffer from the run-time
transformation overhead and disappear once the program terminates, persistent solutions such as
presented by Hawkins et al. [58] also keep parts of the original binary within their rewritten image
to maintain their functionality. Therefore, persistent dynamic binary transformation induces time
and memory overhead during run-time.

A timeline of publications related to dynamic binary rewriting is shown in Fig. 3. After an initial
publication in 1987, the interest in dynamic binary rewriting increased in the mid 90’s, 2000 and
2011, with a peak in 2017, after a short intermission between 2008 and 2010.

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

A survey on binary rewriting 49:7

/ /
’13’07

[123]

’95’94

[58]

’90

[57]

[46]

’99 ’17

[98]

’00
/ /

[65]

[53][90]

[44]

[104]

[43]
/ /

[20]

’14

[62]

’18

[131]

’12

[89] [68]

’15
/ /

[18]

’16

[36]

’11’06’87

[33]

[25] [75][49]

[61]

[119]

[37] [23] [1]

[84]

[10]

[42]

[143]

[111]

[156][124]

’04 ’05
/ /

’03’66 ’01 ’02

[48]

Fig. 3. Timeline of publications presenting dynamic binary rewriting tools spanning from 1966 to 2018. (The
publications [1, 46, 49, 156] present mixed approaches, therefore they are placed in both timelines.)

3 ANALYSIS
The purpose of the analysis step is to provide information on the building blocks of a binary
to enable the subsequent transformation step, which performs the alterations on the identified
instrumentation points. This includes the tasks disassembly, structural recovery, as well as label,
symbol and data type extraction. Although most of the herein described techniques work well
on non-obfuscated binaries, the respective authors mention that the contrary is true for binaries
containing even simple obfuscation techniques. Hence, we omit to consider obfuscated binaries.
Disassembly: The task of a disassembler is to (1) dissect the incoming raw binary stream (see

Section 2) into single instructions as well as to (2) decode these instructions and map them
to a mnemonic and its associated parameters. For example, the byte-wise interpreted bit
pattern 0x89 0x86 is identified and decoded as “copy the contents of register ecx to register
eax” mnemonic (“mov eax, ecx”) on an x86 architecture. The actual decoding step can be
supported by libraries such as Intel XED [66] that provide instruction code to mnemonic
mappings targeting x86. While decoding a single instruction is a straightforward task, identi-
fying the borders between two succeeding instructions is more challenging when utilizing
CISC instruction set architectures due to their variable length instructions. Consequently,
elaborate disassembly strategies have been developed to overcome these limitations, as shown
in Section 3.1.

Structural recovery: Detecting functions and obtaining control flow graphs are the main tasks
of structural recovery algorithms. However, from an assembler level perspective, none of
this structural information exists in a binary. (a) Control flow graph information is implicitly
encoded into branch instructions and must be recovered by following branches from their
origin to their target address. Following branch targets is a challenging task, especially
considering indirect branches. (b) Function borders (entry and exit points) may depend on
the used compiler version and optimization level making them hard4 to detect with simple
pattern matching approaches. Therefore, this section discusses attempts to improve function
detection rates.

Label, symbol and data type extraction: Knowing that a global variable or a constant is a
pointer type instead of an integer or floating-point number is important (e.g., when re-
covering indirect branches). Under certain assumptions, distinguishing between pointers,
integers or floating-point numbers when analyzing a stripped binary can be performed by
UROBOROS [142]. An investigation of the general problem on performing type inference on
binaries is provided by Caballero and Lin [26].

4Simple pattern matching approaches require the exact function entry/exit conventions to be in place. Thus, even
simple deviations, which happen at certain optimization levels (e.g. function in-lining and prologue/epilogue duplicate
removal) can cause these detection mechanisms to miss a function [106].

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

49:8 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

3.1 Disassembly
The primary tasks of a disassembler are (1) to distinguish between code and data and (2) to decode
an identified instruction at a specific address into its corresponding mnemonic together with
its parameters. Therefore, the result of the disassembly step is a separated set of recovered and
identified instructions.

General disassembly challenges: Resolving whether a part of the binary stream is an admissible
instruction or part of in-line data is undecidable in the general case [64, 146]. This is mainly caused
by (a) today’s dense instruction sets (e.g., almost any bit combination may reveal a valid instruction)
and (b) variable length instruction set architectures. In-line data can be caused by the compiler
placing constants (e.g., when building jump tables) in the text section to speed up program execution
in unified cache architectures [52]. A given bit pattern of in-line data in the binary stream can be
easily mistaken for a valid instruction, or vice versa. In variable length instruction set architectures
(e.g., x86) instruction alignment is not required, thus the beginning, or end of an instruction is
not always clearly visible. Nevertheless, the undecidability problem affects only static disassembly
algorithms where dynamic5 disassemblers suffer from the path coverage problem [62]. Here, the
disassembly path of a program depends on the given input data and would require exhaustive
testing6 to reach a 100 percent code coverage [94]. Additionally, binaries are available as stripped
(without symbol information) and unstripped (including symbol information) versions, introducing
or removing additional hurdles for the disassembler [110].
Furthermore, in order to overcome some of the disadvantages of static approaches, dynamic

disassembling strategies are discussed in Section 3.1.3. Additionally, hybrid attempts utilizing the
strengths of the aforementioned disassembly techniques to cover up their weaknesses are described
in Section 3.1.4.

3.1.1 Static - linear sweep. Linear-sweep traverses a binary sequentially from a given entry point
trying to interpret the binary stream as instructions. While this approach is known to yield good
results regarding the ability to find and decode instructions occurring in a binary [8], it lacks the
ability to detect in-line data reliably (e.g., pointer constants embedded in the text section).
An approach to mitigate the in-line data problem in CISC (e.g., x86, x86-64) architectures has

been developed by Bauman et al. [17] by applying an iterative linear sweep disassembler. Here, the
disassembling process begins from a section’s start address and ceases when the disassembler is
not able to decode any further instructions. Now, the algorithm restarts with an offset of one from
the start address. This offset increasing scheme continues until the whole section is disassembled.
Multiple recovery of instructions is avoided by skipping already decoded instructions. This allows
for completely disassembling a text section including in-line data on CISC architectures.

3.1.2 Static - recursive traversal. Recursive traversal algorithms implement linear sweep until
they hit a branch. Then the branch target is taken in either depth-first or breadth-first search
manner [106] and disassembly continues. The motivation behind recursive traversal is to avoid
in-line data by jumping only to valid instructions.
However, branch targets might be calculated at run-time, therefore some paths may be missed

by recursive traversal. Such constructs are called indirect branches.
A special case of indirect branches operating on arrays of function pointers is implemented by

jump tables [115]. Their jump targets are calculated at run-time, which is done using a variable offset
to a constant base pointer on a function pointer array. In fact, the boundaries of the function pointer

5Disassembly at run-time
6Exhaustive testing stems from the software testing domain, meaning that all paths in a computer program must be

covered by the test cases, which is clearly intractable in any reasonable sized program [94].

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

A survey on binary rewriting 49:9

array must be determined correctly by the disassembler. Incorrect array length determination may
lead to (a) an incorrect control flow graph or (b) mistaking data for instructions leading to incorrect
basic block identification in the structural recovery step.

3.1.3 Dynamic. In order to avoid the drawbacks of a static disassembler, dynamic disassemblers
may be employed. The issues considering indirect branches revealed in Sections 3.1.1 and 3.1.2
are omitted by disassembling the program during execution. However, as the covered paths of a
disassembly run highly depend on the chosen input, exhaustive testing would be necessary to reach
full path coverage. This is clearly illusive in reasonably sized programs [94], therefore being the
biggest drawback of dynamic disassembly approaches. Nevertheless, when dynamic disassembly
algorithms are employed, the complete disassembly of a program is seldom of interest.
However, mitigation techniques as rollback and forced execution can be employed to further

increase code coverage [151]. Here, the complete program is traversed in depth-first search order
depending on the given input of the program. At each conditional branch decision, the program
state is saved before the execution proceeds. Once the first leaf on the program’s branch tree is
detected, the state of the last visited branch point is restored and its alternative path is taken by
the disassembler. Thus, increasing path coverage. In order to increase search performance, already
covered paths are marked and are not disassembled again.

3.1.4 Hybrid. Additionally, hybrid approaches to overcome the mentioned deficiencies of dynamic
and static approaches as implemented in Nanda et al. [96], using a mixture of dynamic, linear-
sweep and recursive traversal to obtain a disassembled binary. Here, disassembling starts with a
static algorithm and resorts do dynamic disassembly when needed. Furthermore, static speculative
approaches as presented in Kruegel et al. [78] aid in finding run-time computed or indirect branch
targets, which are not clearly visible to the disassembler. Such constructs can be seen in jump tables,
position independent code (PIC) [150] and virtual function tables [144].

For an in-depth evaluation of selected open source and commercial disassemblers see Andriesse
et al. [8]. Furthermore, note that objdump7 or capstone8 implement a plain static linear approach in
which most other disassemblers realize mixed static approaches including radare29, relyze10 and
IDA-pro11. Dynamic disassemblers are implemented by DynInst [48] and in the work of Kiriansky
et al. [75].

3.2 Structural recovery
Disassembled binaries are agnostic towards concepts like control-flow graphs and functions (and
data types). However, these structural information (or disassembly primitives) are vital to perform
thorough binary rewriting [8, 21, 91, 113, 137, 144]. Therefore, this section discusses approaches to
retrieve the structural information from a disassembled binary without symbol information.

Program (binary) slicing: In the context on binary rewriting, binary slicing, a particular form of
program slicing is used in indirect branch resolution, function boundary detection and variable/data
type recovery, making it a central analysis technique in the step of structural recovery. In general,
static [148] or dynamic [77] program slicing conceptually works by concentrating only on the
alteration of specific variables within a program’s flow in order to determine its local meaning
in a greater context by masking out all information not directly associated with the variables

7https://sourceware.org/binutils/docs/binutils/objdump.html
8http://www.capstone-engine.org/
9http://rada.re/r/
10https://www.relyze.com/overview.html
11https://www.hex-rays.com/products/ida/index.shtml

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

https://sourceware.org/binutils/docs/binutils/objdump.html
http://www.capstone-engine.org/
http://rada.re/r/
https://www.relyze.com/overview.html
https://www.hex-rays.com/products/ida/index.shtml

49:10 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

of interest [22]. Program slicing is a fundamental technique when analyzing and understanding
complex software [149]. Binary slicing is a special application of generic program slicing that
operates on instruction level rather than high-level language statement level, as it is done in classic
program slicing [34].

Control-Flow Graph: A common data structure to have all recovered disassembly primitives in
one place is the control flow graph (CFG), a directed graph with the nodes made up of discovered
basic blocks [4]. A perfectly recovered CFG in the terms of the analysis step is a weakly connected
graph12. Hence, all indirect branches must be resolved. In short, indirect branches are generally
resolved during program execution making it hard13 to succeed for static analysis methods and
cumbersome14 for dynamic approaches. In contrast, direct branches are resolved at compile time,
thus their jump targets are known in advance. Therefore, resolving the indirect branch resolution
problem means solving the control flow graph recovery problem [121, 151]. Furthermore, an ideal
CFG is augmented with a complete symbol table providing function start addresses and variable
addresses (and data types). However, this would require an exhaustive symbol table to be at hand,
which is rarely the case [113]. Techniques such as pattern matching and heuristics [106], binary
slicing [34], abstract interpretation (e.g., value set analysis [13], simple expression tracking [52])
are employed to fill the gap when using static structural recovery methods. Dynamic approaches
benefit from ideas like code-caches [23] and forced-execution [151] to perform their tasks.

Function recovery: Almost all basic blocks in a binary are assigned to a corresponding function15.
Every function is supplied with its start and end address as well as function parameter information.
In general, application binary interfaces specify calling conventions that are followed by compilers,
thus reducing function start address detection to a pattern matching problem. However, different
compiler versions implement different conventions under varying optimization levels making
pattern matching a cumbersome task.

3.2.1 Binary slicing. Just like program slices, binary slices can be computed in a forward and
backward manner. Forward (binary) slicing is used to answer questions like ”What statements
(instructions in binary context) are affected by the value of variable v at statement (instruction) s?”. In
contrast, backward slicing tries to solve queries of the type ”What variables v have been affected by
executing the program up to point (address) p?”. In the context of structural recovery, the latter can
be used to approximate the admissible value interval a register might have in order to determine
the target address range for an indirect branch. Binary slicing algorithms can be applied to stripped
binaries.
Furthermore, binary slicing is available as (a) intra-procedural binary slicing and (b) inter-

procedural binary slicing. Intra-procedural binary slicing has been developed by Cifuentes et al. [34]
and is limited to computing forward and backward binary slices within a given procedure (function).
It implements a static slicing algorithm based on the goto slicing algorithm developed by Agrawal [2].
Inter-procedural binary slicing has been developed by Kiss et al. [76] and is an extension to the work
by Cifuentes. It is able to compute backward and forward binary slices across function boundaries
using the intra-procedural algorithm in its core.

12A weakly connected directed graph has an underlying connected undirected graph
13In the worst-case scenario, an indirect branch may hit any address within the text section/segment of a program.

Furthermore, the indirect branch target address may be computed from user input making the decision on the actual indirect
branch target address undecidable in the worst case [8].

14Since indirect branch targets may be taken more the once in a program flow, the overall dynamic analysis overhead
can be reduced when already disassembled basic blocks are not disassembled again. Hence, various caching and indirect
branch target address prediction schemes exist that re discussed in Section 4.2.

15An exception would be reset code that is immediately executed after power on.

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

A survey on binary rewriting 49:11

3.2.2 Indirect branches. An indirect branch is fully defined through a generic register expression of
the form base + index × scale + offset, with base and index being registers [13]. Nevertheless, only
the base address register is mandatory (e.g., “jmp eax” is a sufficient indirect branch expression in
x86 assembly).

In contrast, a direct branch can be identified by a branch target address that is directly encoded
in the instruction, for example, the x86 instruction “jmp 0xdeadbeef” realizes an unconditional
direct branch. Considering CISC architectures, a direct jumps target address can always be reached
within a single instruction [125]. However, if the direct branch is implemented on a RISC machine,
this might not always be the case since branch instructions on RISC machines are not able to cover
the architecture’s whole address space.
Furthermore, branch target addresses of indirect jumps are not directly visible for static disas-

semblers. Additionally, the value of an address register may stem from a computation involving an
arbitrary user supplied value that cannot be resolved directly [46].

Indirect branches can be resolved using static backward binary slicing. However, binary slicing
operates on registers only and is not capable of resolving indirect branches of the type “jmp [eax]”.
Here, the branch target is stored at the memory address to which eax is pointing (e.g., a global
variable). A tool implementing binary slicing would have to fall back on either marking the indirect
branch as not resolvable, or employing a dynamic recovery approach. EEL [81] as an early binary
rewriter covering this subject implemented the dynamic indirect branch resolution approach for
jumps of type “jmp [eax]”.
Tracking target addresses of indirect branches referencing global and local variables can be

achieved using abstract interpretation based approaches [74]. Abstract interpretation provides
means to link semantics with different levels of details of a program in order to reason about its
run-time behavior [40].
A look up table based approach using static pre-computation and dynamic resolution, based

on Pin’s [84] indirect branch resolution scheme, has been proposed by Bauman et al. [17]. Here,
the authors pre-compute a lookup table holding the address of every byte in a given section. Each
entry of the look up table is filled with the new address of the primitive relocated during the
transformation step, thus creating an associative array. For this to work, every indirect branch
must be transformed to a direct branch16 at the right location of the look up table. If the entry is
valid, the new branch destination address can be obtained, otherwise a segmentation fault occurs.

Static - Value Set Analysis: Value set analysis (VSA) implements an abstract interpretation ap-
proach to find a set of over-approximated values for each data object at a given program point [13]
(e.g., what is the possible value of register ebx at location 0xdeadcode). A key feature of VSA is
that it tracks integer-valued and address-valued quantities simultaneously [14]. The technique has
similarities with pointer analysis, but aims at assembly level programs.
In VSA, a data object might be a register, a global variable, a local variable or heap allocated

memory. Each data object (i.e., global variable) is represented by an address location, called a-loc. An
a-loc is defined by a tuple consisting of a range (rng) and offsets o of the form {rnд 7→ o}. An instance
of a range might be a specific global variable. In order to provide a bounded over-approximation of
the possible values of an a-loc, offsets are realized as strided intervals with lower and upper bounds
as well as a size information (stride[lower, upper], size).

Each a-loc can be referenced from within various procedures. Now, the idea is to collapse all dif-
ferent occurrences of a range with its different offsets into the form {rng 7→ {o1, o2, ..., on}}, making
the over-approximation and bound estimation possible in a convenient way. The convenience lies in
the fact that due to the combined procedure local a-loc representations a global bound computation

16Plus some administrative code; For details see section IV of Bauman’s paper [17].

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

49:12 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

can be done efficiently. Furthermore, the different ranges are mapped into a value-set of the form:
{rng1 7→ {o1, o2, ..., on}, ..., rngr 7→ {o1, o2, ..., on}}.

Let us assume17 the instruction “jmp 0x1000[eax*4]” has the current a-loc representation for
the register eax of {eax 7→ {[0, 9],⊥, ...,⊥}}, with ⊥ denoting the empty set. In this scenario the
algorithm is interested in computing the possible target addresses of the indirect branch given
the above-defined a-loc for eax. An evaluation of the jmp instruction under eax’s a-loc reveals the
possible branch targets of {0x1000, 0x1004, ..., 0x1036} that can be added to the CFG. However, in
case the abstract interpretation of the branch instruction would result in a set of all possible target
addresses, no edges would be added resulting in a possible under-approximation of the indirect
branch’s target addresses.

Currently, VSA based approaches are, for example, used in rewriting tools such as Bitblaze [126]
and BodyArmor [124].

A further application of VSA is implemented in Jakstab [72, 73]. Here, abstract interpretation is
used to compute an over-approximation of safe values for indirect branches, by utilizing data flow
analysis on an intermediate language. The bounded address checking part of the approach used to
check the sanity of the approximated values is inspired by VSA.
Another approach using symbolic execution [15] as a basis has been used in the tool JITR [38],

that is able to recover indirect branches occurring in switch/case statements. The authors introduce
a value set analysis approach embedded in a symbolic execution context. Another SVA approach,
which mixes dynamic and static value set analysis (VSA) is employed by Mayhem [28] for automatic
exploitation purposes.

Static - Simple Expression Tracking: A different approach leveraging the transformation capabili-
ties of LLVM [83] is used by Di Federico et al. [46]. Here, the binary of interest is lifted to LLVM’s
intermediate representation using QEMU’s tiny code generator lifter as a preliminary step. The
obtained LLVM program is then transformed into single static assignment (SSA) representation.
Based on SSA, the author’s simple expression tracker (SET) in conjunction with shift offset range
data flow analysis is used to determine an over-approximation of possible jump targets.

A SET computation starts by detecting an indirect branch. Now, all non-constant operands (i.e.,
registers, memory locations) are tracked back until a constant is found. Then, the constant is used
as input for the computation of the true target address of the indirect branch.

In order to supply bounded values for SET’s results that depend on non-deterministic data, such
as user input, SET is accompanied by a data flow analysis based approach called offset shifted ranges
analysis (OSR). OSRA is able to provide bounded values for expressions of the type constant+ a× b
for small values of a and b [46].

Dynamic indirect branch recovery: In opposition to static approaches, dynamic structural recovery
algorithms are easily able to resolve many branches correctly, but suffer from the same problems as
static approaches regarding function boundary detection and data type retrieval. Furthermore, the
code coverage issue is still existent, which can be tackled with forced execution and rollback [151].
Here, Xu et al. implement a first-depth search based approach that saves the location and state
of the program before executing each branch. Upon reaching a leaf in the dynamically extending
CFG, a rollback to the last branch including an execution of its alternative path is forced, leading to
improved CFG recovery.

Unfortunately, dynamic branch recovery approaches suffer from high computation overhead [23]
that can be reduced by utilizing code caches. Indirect branches are processed by translating their
original addresses to their corresponding code cache address every time they are hit using a hash

17Taken from Balakrishnan and Reps [13].

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

A survey on binary rewriting 49:13

table. The code cache mechanism provides the ability to detect already disassembled basic blocks
and directly link them together as they are processed by branching resulting in a processing speed
up [23].

3.2.3 Function recovery. Function recovery consists of function boundary and function start de-
tection. Where function start address identification tries to determine which addresses resemble
a function’s entry point, function bound detection retrieves the first and the last address of a
function [9]. To know the bound of a function is vital for a variety of further analysis and rewriting
techniques like control flow protection [158] and binary instrumentation [82].
In the common case, function boundaries are determined by function prologues and epilogues.

Both usually follow a pattern of certain instructions defined by the calling convention in the
application binary interface (ABI). The next paragraphs provide an introduction on commonly used
function recovery strategies.

Pattern matching and heuristics: A direct approach for function start address detection is realized
by using pattern matching and heuristics [113, 146]. However, as shown by Andriesse et al. [8],
the function start detection success rate drops to about 80% with increasing false positives caused
by handwritten assembly, or encountering an optimizer’s results that are not covered by the
pattern matching/heuristic schemes. Furthermore, pattern matching approaches are highly compiler
dependent [8].

This issue can be mitigated to some extent using machine learning based approaches as done in
Byteweight [16] or by Shin et al. [120]. While Byteweight performs function bound detection by
utilizing an oracle providing the required mappings between function prologues (epilogues) and
symbol information in combination with value set analysis to obtain function bodies, the approach
by Shin uses trained neural networks to perform function bound detection. Although, better than
simple pattern matching, machine learning based approaches are highly dependent on the quality
of the training sets (i.e., which compiler types, version and variety of binaries).

Pattern matching in combination with backward binary slicing, used for indirect function calls,
is performed by Qiao and Sekar [108]. After obtaining the slice for an indirect function call, pattern
matching is used to determine whether the branch is a function call or an intra-procedural branch.

Graph based approaches: A true compiler agnostic, but still architecture dependent approach for
function start address detection for x86 has been developed by Andriesse et al. [9]. The approach
works by creating a global call graph18 of the binary, followed by a weakly connected component
analysis: First, all edges created by a direct call instruction are hidden. This creates a partitioned call
graph, where each partition consists only of basic blocks connected through instructions other than
call. Now, all targets of the direct call instructions are used as function entry points to determine
the neighborhood of the function candidate by following the control flow regardless of direction.
While doing so, return instructions are not of interest. These steps will detect all directly called
functions ceasing the weakly connected component analysis. The remaining functions are located
in the spare basic blocks not yet associated with a function and are detected by further applying
weakly connected component analysis and function entry point detection using global control flow
analysis.

In addition to the compiler agnostic approach by Andriesse et al. [9], Federico and Agosto. [52],
as well as Federico et al. [46] introduced an architecture agnostic method for function boundary
detection. The approach uses QEMU’s tiny code generator as a first step before lifting the program
into the LLVM intermediate representation where the detection mechanism is executed. The

18A call graph is a CFG without basic blocks. A global call graph consists of all edges within the binary regardless of
possible function affiliation [158].

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

49:14 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

algorithm starts from candidate function entry points. These are obtained by harvesting the
programs LLVM representation including global variables with respect to (a) direct function calls
and (b) global constants. Furthermore, only global constants that refer to already recovered basic
blocks if they are interpreted as pointers are taken into account. Now, each targeted basic block
(from either (a) or (b)) is explored by following other branches until a function return pattern is
reached. The algorithm stops and returns an over-approximation of a candidate’s function bounds.
In the next step, the set of candidate start addresses is filtered by keeping all start addresses that
are exclusively reached through direct calls or through skipping jumps (e.g., through tail calling).

3.3 Label, symbol and data type extraction
Disassembled and with respect to data and instruction classified stripped binaries have no concept
of labels, symbols and data types [3]. However, their presence is important in certain analysis and
code generation scenarios [142]. Therefore, symbolization and data type recovery algorithms are
used to augment disassembled binaries with the required information:

Labels: In general, labels are used as a placeholder for branch targets that are resolved to addresses
during assembly when it is clear how much memory the instructions between a branch source and
its target will consume. Since the transformation step in which the binary is eventually modified
(see Section 4) is likely to invalidate the original branch target addresses, re-labeling is necessary
when feeding a transformed binary to a commercial off-the-shelf (COTS) assembler.

Symbols and data types: A disassembled program has no concept of data types or symbols. From
an assembly level perspective four consecutive bytes in memory may represent a 4-character long
string, a 4-byte integer, or a pointer on a 32-bit processor. However, when recovering indirect
branches, it is important to know whether a global variable shall be interpreted as an integer, a
base pointer of a jump table, or a string. A sub problem in data type detection is function parameter
detection, where stack based recovery is easier than register based retrieval because stack based
function parameter signatures are well defined [97]. Making these decisions and creating a symbol
table of its findings is the task of a symbolization algorithm.

Symbolization: Pointer constants cannot easily be distinguished from numeric constants, or
string constants in disassembled stripped binaries due to the lack of labels and symbol names.
Hence, symbolization algorithms provide means to do the differentiation as well as the creation of
a symbol table that can be used in later steps. Furthermore, these algorithms have the ability to
detect certain data types such as strings and floating-point numbers [53, 57, 141, 142].
A straightforward attempt in doing so is to test whether machine word wide constants point

within the valid address range of the binary when interpreted as a reference. This approach is
feasibly possible since address boundaries of .text and .data sections are always contained in the
executable when operating on unobfuscated binaries.

For example, let us consider a binary with the .text section start address of 0x8000000 and a length
of 0x5000019. In case the symbolization algorithm encounters the numeric constant of 0x00000300
at address 0x8060004, represented as 0x00030000 on a 32-bit little endian architecture, it is obviously
a constant since it is pointing outside of the .text section. However, in case a numeric constant of
0x804ec3d is detected at address 0x8060080 it can either be a pointer resembling a branch target in
the .text section or the little endian representation of the floating-point number 4e-34 declared as
static variable.

19Example is taken from Wang et al. [141].

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

A survey on binary rewriting 49:15

This leads to the necessity for more sophisticated symbolization approaches than pure range
plausibility checking, as done by Uroboros [142], that is capable of differentiating between pointer,
integer constants and strings (null and non-null terminated).
For example, Zipr’s [53, 57] approach is based on address pinning, which is performed during

(indirect) branch resolution in Zipr’s dynamic structural recovery module. An instruction’s location
is marked for updating (pinning) during transformation as soon as it is referenced by an (indirect)
branch. The algorithm keeps a record of what branch targets what address, making it possible
to build a dependency graph that is used as update reference during rewriting. As soon as an
instruction is moved due to instruction insertion, the update mechanism is triggered causing all
references to be adapted in such a way that the dependency graph stays correct. Additionally, Zipr
creates a symbol table holding all detected pointers.

An evolution of Uroboros’ approach to data type identification is utilized by Ramblr [141]. Wang
et al. employ a mixed approach using blanket execution [50] and localized value set analysis. Blanket
execution is an abstract interpretation based semantic similarity detection algorithm using feature
weighting. A feature is defined as a read or write operation to a memory location of interest and is
used to detect dependencies between variables and constant definitions in order to determine their
types. This is achieved by applying a combination of data dependence analysis, program slicing,
and value-set analysis to address corner cases such as unaligned variables.

For example, in order to identify and recover a jump table, an intra-procedural backwards slice
is generated with respect to the jump target. On behalf of the slice, value-set analysis is applied to
find all entries within the table and to recover an over-approximation of possible branch target
addresses. The algorithm terminates by marking the recovered table as pointer array.
Nonetheless, compiler optimizations such as base pointer re-attribution may lead to missed

pointers. For example, the C expression “arr[var - 'B']--;” computes the actual index of the
array arr by subtracting the constant offset 0x42 (the hex value of the ASCII character B) from the
variable var to obtain the value stored in the array which is then decremented. Since the subtraction
of 0x42 is always done, an optimizing compiler may replace the base pointer of arr with the result
of the computation “arr - 'B'” which can result in the new base pointer being located outside
of the admissible memory region stated by the binary meta data (e.g., arr is the first variable in
the .data section). Therefore, a symbolization algorithm will mistake the pointer for an integer
constant. This issue can be overcome by enlarging the address boundaries provided by the binary
meta data with a small experience based margin. The enlarged memory region can now be used as
a pre-filter to identify immediate values that can be symbolized according to Wang et al. [141].

4 TRANSFORMATION
The transformation step’s task is to modify object files or already linked binaries in such a way
that they include the desired additional functionality, but stay executable [81]. However, compilers
produce densely packed code without empty address ranges except for padding within a section.
This implies that there is no space for additional instructions after code generation. Hence, it is the
task of the transformation step to find and exploit these locations within a binary where adding
instrumentation code is admissible. Such locations are called instrumentation points [21]. Binary
rewriting attempts can be generally categorized into static and dynamic approaches, that can be
augmented with minimal-invasive and full-translation techniques.

Static: Static binary transformation performs alterations directly at the instrumentation point
without any intermediate steps. It is most commonly used for link-time code manipulation
and alterations affecting the instrumentation point only. One of the first static rewriters
publicly available was the Liberator toolset for Honeywell’s Series 200 systems presented

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

49:16 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

in 1966 [63]. The software’s purpose was to translate programs from the IBM 1400 series
machines to Honewell’s own computer system.

Dynamic: Dynamic transformation is capable of performing alterations at instruction granularity
during program execution. In order to support programs written for the MPE V operating sys-
tem that were executed on HP-3000 processors for the new HP precision architecture, Hewlett
Packard implemented one of the first a dynamic binary translation approaches in 1987 [20].
The tool was implemented as an emulator that was capable of resolving branch targets that
could not be determined within a single transformation run (e.g. indirect branches).

Minimal-invasive: Minimal-invasive based transformations operate on branch granularity. They
work by redirecting the program flow to a newly created part of the program in the binary
under investigation. The additional instructions are inserted before the program flow is
continued. ATOM [128] was a follow up tool on OM [5] by the same authors that relied on
OM’s transformation scheme, but new code is added in a distinct section between the text and
data section, creating a first version of a static minimal-invasive binary transformation style.
Since the transformation is applied before linking, a valid binary can always be produced. The
actual editing can be done using the binutils bfd [129] library. The first static minimal-invasive
transformation approach to allow for persistent binary alteration on stripped binaries was
presented by Prasad et al. [106] in 2003.

Full-translation: Full-translation based transformations are able to transform binaries at any
instruction, but require the binary of interest to be transferred (lifted) into an intermediate
representation. The first tool implementing this approach is ATOM [128]. Since ATOM also
implements the first version of a static minimal-invasive binary transformation scheme, it
can be seen as a mixed approach.

4.1 Static
Static binary rewriting can be divided into approaches requiring symbol table information and
those that do not [21]. However, many of the latter approaches are able to leverage symbol table
information if available.

Rewriting without obligatory symbol table information. Altering instructions in a program’s text
section can have several implications.

In the best of all cases, static rewriting without symbol information is interested in exchanging
instructions without the necessity to expand the text section of the program under investigation,
thus avoiding the need to update branch target addresses. Such a case might be immanent when
doing binary translation in fixed length instruction set architectures with semantic equivalent in-
structions that differ in their encoding as it has been in done by Honeywell [63] in 1966. Honeywell’s
liberator tools implemented a set of static binary translation tools that worked without symbol
table information most of the time [134]. However, that was mainly the fact because Honeywell
designed their 200 series to be compatible with IBM’s 1400 series [39]. Thus, only few additional
tasks regarding incompatible instructions, except for direct instruction mapping were required to
do.

However, as soon as a rewriter intends to add new instructions at instrumentation points the need
for updating branch target addresses arises. While this is generally not a problem with program
counter relative jumps and absolute branches, the update of target addresses for indirect branches
is an undecidable problem in the general case [64]. A first attempt to tackle this problem has been
made by Killian’s Pixie in 1986 [130]. The tool implemented basic block counting by adding at least
three MIPS 1 instructions of instrumentation code at the beginning of a newly discovered basic

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

A survey on binary rewriting 49:17

block20. In order to cope for indirect branch target address updates, Killian introduced address
translation tables. When using address translation tables, the rewriter adds a look-up table to the
statically rewritten program that maps addresses from the original program into addresses of the
modified program. Thus, every time an indirect branch is going to be taken in the modified program,
an unconditional jump into the look-up table is performed, which redirects the program flow to
a correct target address in the original application. Since the whole instruction address space of
the original program must be covered and the original program must be stored as backup as well,
this results in an overhead of more than 100 percent in terms of program size. Additionally, this
approach is often limited to statically linked programs.

Today’s address translation schemes implement an extended two-level version of Pxie’s technique
as it is used in Multiverse [17]. Here, a look-up table capable of addressing every byte in the
application with a 4 byte offset is used to generate a mapping that allows reaching every entry in
the table. Indexing an entry in the look-up table is done by calculating the offset of the original
address from the base address of the original program’s text section. If the calculation returns a
valid address in the original text section it is returned. In case the default dummy value 0xffffffff is
returned, the program issues an error. However, if the indexed address is outside of the original
text section, the second level look-up table is queried, which holds addresses to linked libraries.

In order to get rid of these high overheads, Sites et al. [122] implemented a so-called open-ended
approach for static binary translation. Here, the translation is not complete after an initial run, but
converges towards completeness upon new paths in the program are executed and translated.
Additionally, almost all of the early static binary rewriting tools realized their alteration using

RISC processor architectures. One the one hand this imposes a relaxation on rewriting an instruction
in-situ due to the fixed size instruction lengths of RISC processors. On the other hand, it raises
challenges considering the rewriting of instruction having branch delay slots. For example, the
“branch equals” instruction on MIPS features a delay slot, where its opposite instruction, “branch not
equals” does not [35]. While this case in particular of interest for branch inversion in the context
of optimization, it becomes a much more general problem when performing binary translation
between different processor architectures like MIPS with some instructions having delay slots and
ARM, where no delay slots are utilized [80]. Furthermore, when rewriting CISC programs, the
variable instruction lengths have to be taken into account.

A static rewriting platform that supports x86, x86-64, SPARC, PowerPC, ARM architectures
as well as a plethora of analysis algorithms is realized by Dyninst [48]. After its first years as
a monolithic tool-set, it has been refactored into a set of modules directly exposing most of its
Dyninst’s features to the user in 2007 [109]21.

Rewriting with symbol table & relocation information. Rewriting with symbol table and relocation
information at hand opens the possibility for more sophisticated static program alterations. Hence,
a first idea implemented by Wall [140] was to reduce the high overhead introduced when using
address translation tables by utilizing symbol and relocation information. The approach was realized
before linking the binary together with an unmodified linker. The tool’s focus was basic block
counting.
Due to the availability of symbol and relocation information, static retrieval of control flow

graphs that were augmented with additional information from prior profiling runs were possible.
By using this idea, Larus et al. [80] implemented weighted control flow graphs that showed how
often certain edges in the CFG were traversed. This made it possible to constrain that qualified for
instrumentation and optimization.

20load counter → increment counter → store counter
21Publications building on Dyninst can be found at https://dyninst.org/related/view_papers.

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

https://dyninst.org/related/view_papers

49:18 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

Knowing which edges in a CFG are traversed often made rewriting with symbol and relocation
information interesting for the application of link-time optimization. During the software building
process the linker is invoked after code generation to create the final binary in its intended format
(e.g., ELF). Thus, all required symbol information is still available in the object files, since stripping
is done after linking. Code optimization at link-time is particular of interest since it enables program
alterations that require knowledge of from an interprocedural CFG (ICFG)22 that can be generated
at link-time. Based on the ICFG several optimization approaches have been realized, with the most
common being: Constant propagation & subexpression elimination: The basic idea behind
constant propagation is to find pools of variables that do not change for a pair of abstract syntax tree
nodes. This is of interest since the occurrence of these variables might be exchanged with their literal
value, thus preserving memory references [70]. A similar idea is executed when by searching for sub
expressions that can be pre calculated in order to save execution time [70]. Targeting those kind of
rewritings have been identified as a promising source for performance improvements [116]. While
earlier tools like Alto [93] and Plto [116] utilize straightforward constant propagation algorithms
as presented in Wegman et al. [147], approaches that are more recent like Diablo implement
fixed-point computation based solutions [29]. Basic block rearrangement: Tools that implement
sophisticated profiling techniques such as Ispike [85] that targets Intel Itanium processors are able
to obtain information that can be used for cache optimization and basic block rearrangement. In
case of Ispike, the hotness23 of a path is used to guide a basic block rearrangement algorithm in
resorting certain blocks that are likely to be executed in a sequence. This is primarily done by
inverting branches and inserting unconditional branches [85]. For more details on path hotness
calculations see Section 4.2. In contrast, Diablo [29] implements a technique called factoring where
identical basic blocks are merged and the edged are adapted accordingly. Both techniques are
possible due to the availability of interprocedural CFGs, symbol tables and relocation information.
Unreachable code elimination: Dead code is known as basic blocks that have no inbound edge
and thus can safely be removed once the interprocedural CFG is created [93].

Additionally, prior to performing their tasks, link-time optimization tools use preliminary profil-
ing runs to retrieve information about the locations that could benefit from optimization [29, 85,
93, 116].

4.2 Dynamic
Dynamic approaches either utilize the operating systems debugging or tracing interface like the
PTRACE API under Linux [103] resp. the application debugging API under Windows [69], supply
their own instrumentation runtime like Dynamo [11], or realize a virtual machine approach as
done by STRATA [119].
One of the earliest dynamic binary rewriting approaches has been realized by Bergh et al. [20]

in 1987. The tool performs binary translation from software running on HP-3000 machines to HP
precision processors involving an emulator that is used whenever a data dependent or indirect
branch must be resolved. In such a case a special node mapping table is constructed that is filled by
the emulator translating HP precisions branches back to HP-3000 addresses Circumventing the
problem of resolving indirect branches Johnson [68] realized a dynamic rewriter that utilized a
modified linker, which retained all relocation information.

However, such direct approaches experience a significant overheadwhen instrumenting recurring
instruction sequences. Furthermore, the required context switches between rewriting software

22An interprocedural CFG is a CFG that resembles all procedures of the program [5].
23Hotness is calculated by recording the recurrence of certain paths in a program. Since hot basic blocks cannot be

isolated in general, path hotness is able to spread across basic block boundaries forming hot paths[136].

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

A survey on binary rewriting 49:19

and program under investigation upon placing code at instrumentation code causes a significant
run-time overhead [23, 117]. In order to reduce this overhead code caches are employed.

Code Caches. A code cache is a data structure that is filled with recurring instruction sequences
that are subject to rewriting [11]. Cached instruction sequences are either of basic block [23, 35], or
larger granularity (e.g. traces24 [11, 127], or fragments [35, 117]). In case an instruction sequence
supports larger granularity than basic blocks they usually span direct branches and end at indirect
branches. Operating on instruction sequences that are larger than basic blocks has the advantage
of being able to cache interprocedural instruction sequences. That directly benefits optimization
attempts [11]. Nevertheless, approaches working with basic blocks employ basic block stitching
techniques to enqueue several basic blocks to longer sequences [23, 35].

Selective Code Caching. However, not all sequences are necessarily cached, but only those that
stem from hot paths during execution. A path gets hot once it has been traversed several times de-
pending on a threshold value [11, 12, 35]. Nonetheless, during path hotness detection an instruction
sequence, (e.g., a basic block) is not considered isolated, but is able to dissipate heat to its neighbor
sequences. This is done by also taking the predecessor and successor sequences of a hot sequence
into account. Therefore, the cache is only filled with heavily frequented parts of the program under
investigation.
Usually caches employ some kind of replacement strategy in order to have always the most

recently referenced information at hand. Considering code caches, the replacement strategy flush
when full is most commonly used (e.g., [23, 35, 117]). An exception is implemented by Dynamo [11,
12] that realizes a pro-active cache flushing strategy based on how often cached traces have been
hit recently. This results in a smaller code cache.

Instruction Sequence Linking. Adding instrumented instruction sequences into a code cache is
first step on improving a dynamic rewriter performance. However, at the end of sequence a context
switch between instrumented and instrumenting task would have to occur in order to find the start
of the next sequence. Instruction sequence linking techniques counter this necessity.

Regarding unconditional and statically known conditional branches in Dynamo, fragments are
linked together by letting a cached fragments exit branch point to its successor in the fragment
cache rather than the original code location [11, 12]. Since also indirect and conditional branches
are subject to target address redundancy, Dynamo maintains table of predicted indirect branch
targets that is consulted upon reaching an indirect branch. If the indirect branch points at a cached
fragment, the link is directly followed. Otherwise, control is handed back to the Dynamo runtime
that resolves the new branch address and updates the entry in the predicted indirect branch table if
it points to another already cached fragment.
Instruction sequence linking is also used by virtual machine approaches like STRATA [117].

Here, a fragment starts with the next uncached instruction and ends with a conditional or indirect
branch. Since each fragment is placed into the cache, the according control transfer function is
rewritten to reach in a trampoline that leads back to STRATA’s fragment builder issuing a context
switch. If, after some time both branch targets of a conditional branch reach into cached code, the
trampolines are removed thus linking together the fragments. Something similar is used in terms
of adding new fragments upon following the control transfer function is done when encountering
indirect branches [118].
Another technique for indirect branch linking is utilized by Pin [84] and HDTrans [127]. Both

tools implements a hash table that links the branch source addresses of indirect branches with a
24Although Dynamo names instruction sequences that qualify for caching traces, it calls them fragments as soon as

they are in the code cache. [11] Hence we will call Dynamo’s fragments Dynamo fragments throughout the paper.

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

49:20 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

list of predicted targets. A branch target address is added to the predicted target address list as
soon as it has been taken once. This creates a linked list of indirect branch target addresses. The
main difference between these two realizations is that HDTrans checks if the indirect branch target
is already hashed and then links the basic blocks directly, while Pin resolves the target first, and
then checks if it hit the right entry in the linked list of indirect branch targets associated with that
originating address.

Cifuentes at al. [35] realized a simpler approach by counting the time a certain target is hit by an
indirect branch, thus making it the default indirect branch target in their prediction. In case the
prediction was false a context switch and resolution by the instrumenter was performed.
Usually return addresses can be resolved straightforward, however, traditional approaches

required direct support for C++ exception handling, garbage collection and longjmp() calls. Thus,
Sridhar et al. [127] introduced a cooperative call/return protocol that puts the untranslated return
address on the stack and a translated return address in the code cache. Upon the call of a return
instruction the translated address is taken. However, if the approach fails due to recursion for
example, the indirect branch address translation scheme of HDTrans is used. Considering exception
handling Chen et al. [30] instrument the appropriate ntdll calls in Windows to support this feature
in Mojo.

Performing Alterations. After finding the instrumentation point of interest, dynamic rewriters
either employ (a) minimal-invasive alteration to generate persistently changed binaries (e.g. [112]
), (b) a full-translation approach allowing to execute elaborate analysis techniques (e.g. [53, 57]),
or a (c) list of linked basic blocks that allow mostly for non-persistent binary alterations with less
execution time overhead (e.g. [43, 75]).

In case (a), the transformation problem falls back to the static minimal-invasive transformation
problem after executing the analysis step dynamically (see Section 4.3). This has been done on
in the work of Hollingsworth et al. [62] for Unix, and in Etch [112] for Microsoft’s PE format.
Minimal-invasive based constructs can be created at run-time by allocating a buffer holding the
instrumentation code in an executable marked memory region using the mprotect()25 function
call under Linux or the VirtualAllocEx()26 function under Windows. The same approach is used
by DynInst [25, 48]27. Diota [87] utilizes this approach as well, but retains an original copy of the
altered program’s parts in memory to handle the data in code and code in data rewriting problem
for CISC machines.

Case (b) results in a static full-translation transformation problem. An instance is realized by the
work of Jackson et al. and their rewriter Zipr [53] by implementing a lifter to the high-level language
ADA28 to utilize the plethora of available formal verification and analysis frameworks. Although a
dynamic approach, Zipr claims to able to generate persistently rewritten binaries using a technique
called address pinning (see Section 5 for further information). In order to facilitate transformation
and optimization tasks when translating between IA-32 and IA-64 programs Srivastava et al. [49]
employed Microsoft’s own intermediate representation MSIL. Cifuentes et al [35] use a register
transfer level based intermediate representation for their binary translator framework walkabout.
Case (c) subsumes rewriting approaches that implant their instrumentation directly at binary

level using just in time compilation techniques. The basic approach does not require any trampo-
lines or intermediate representations but injects compiled code fragments at the instrumentation
points of the cached instruction sequences. Most of these approaches do not allow for persistent

25http://man7.org/linux/man-pages/man2/mprotect.2.html
26https://msdn.microsoft.com/en-us/library/windows/desktop/aa366890(v=vs.85).aspx
27See https://www.dyninst.org/related/view_papers for a list of publications using DynInst.
28http://www.adaic.org/

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

http://man7.org/linux/man-pages/man2/mprotect.2.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366890(v=vs.85).aspx
https://www.dyninst.org/related/view_papers
http://www.adaic.org/

A survey on binary rewriting 49:21

transformations, but rather aim at efficient run-time alterations during program execution as it is
done by Kiriansky et al. [75], Pin29 [84] and the dynamic path of Kevlar [43] for example. Since not
all alterations30 require a detailed disassembly of each instruction, DynamoRIO31 [23] introduces a
five layer based instruction representation scheme. The scheme is an extension to Dynamo’s [11, 12]
instruction representation that is used for fragment linking.

4.3 Minimal-invasive
Minimal-invasive binary transformation in a static rewriting attempt works as depicted in Fig. 4a
to Fig. 4c. The program flow displayed in Fig. 4a will be redirected during the transformation
procedure shown in Fig. 4b in such a way that the intended instrumentation code located in a new
program section (respectively segment) will be executed before and after the instrumented function
in Fig. 4c.
It has to be noted that minimal-invasive binary transformation attempts are only capable of

instrumenting binaries at branch granularity, since instrumentation code can only be reached by
redirecting existing branches in the original binary.

The original program flow displayed in Fig. 4a (1) through (4) consists of a prologue and epilogue
for function a_func with a_func performing an arbitrary task. It will be augmented by some
instrumentation code adding features to a_funcs epilogue and prologue code as it would be the
case when adding stack canaries32 for security. a_funcs transformation process displayed in Fig. 4b
consists of the following steps, assuming the binary format under investigation is of type ELF:
(I) A new section (.newsec) is created and the instrumentation code is added to the binary.
(II) The function prologue of a_func is copied right after the instrumentation code. Furthermore,

the instrumentation code has to save the current machine state in order to stay transparent for
the remainder instructions and the instrumented binary. The old location of a_func’s prologue
is called the instrumentation point. It must be long enough to hold the instructions added in
step (III). The instrumentation code itself is shown as exec_instrum comment. Furthermore,
an unconditional jump is added (“jmp <ra_func>”) aiming right before the call instruction
for a_func

(III) There is a check if the prologue of a_func can be exchanged with an unconditional jump into
the instrumentation code located at instrum. in .newsec. While this was possible in our case,
not all instruction set architectures are able to cover their whole address space within in a
single jump instruction [131]. Thus, when the instrumentation code location is out of range
for a single jump instruction another instruction would have to be inserted in order to reach
instrum. in .newsec. This in turn would cause address updates of possibly all branches within
the binary, leading to the necessity of reassembling the whole binary, which is not intended,
or even possible in most cases when applying minimal-invasive binary rewriting [46]. A
solution to this problem was presented by Prasad and Chiueh [106] who replace the jump
instruction with a debug interrupt call (if available on the architecture). In case explicit
debug instructions are not available or their utilization is not intended, trampolines can be
used [145]. Similar to a real trampoline, a trampoline in the context of binary rewriting can
be reached with a comparably small jump from an instrumentation point, however, just like

29Pin for ARM adds a relaxation to the rewriting problem when it comes to self modifying code detection, as ARM
processors provide a dedicated instruction for that purpose [60].

30E.g., Detection of basic block boundaries requires only to know that a certain byte sequence represents a branch
instruction, but the branch’s parameter decoding is not of interest at that time.

31A list of publications utilizing DynamoRio can be found at http://dynamorio.org/pubs.html
32A random, but known by the application value that is placed before the return instruction of a function. In case it is

overwritten by an adversary, or by accident, the program will know and abort before any harm is done.

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

http://dynamorio.org/pubs.html

49:22 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

1

2

3

4

(a) Program flow before
transformation.

III

I

IVII

(b) Transformation steps.

1

2

3

4

6

5

8

7

9

10 11

12

(c) Program flow after
transformation.

Fig. 4. Implications of (static) minimal-invasive binary transformation on a binaries program flow. Round
circles with Arabic numbers unveil the program’s branch sources (right hand side of the corresponding
instruction) and branch targets (left hand side of the corresponding instruction) shown in Fig. 4a and Fig. 4c.
In addition, round circles with Roman numbers reflect the necessary transformation steps in order of their
application as displayed in Fig. 4b.

when using a real trampoline, the subsequent jump will be amplified making it possible to
reach a far away instrumentation point of interest in a different section. The trampoline
is usually implemented as a jump table, with the instrumentation points addressing a slot
within the table to reach their intended instrumentation code. In case trampolines and debug
instructions are not an option, one may use the instrumentation point and its adjacent
instruction to create a branch to instrumentation code as it is done by BIRD [96].

(IV) Finally, the epilogue of a_func is instrumented. However, the “leave” instruction occupies
too little memory to be replaced by a “jmp” instruction. This also represents a case in which
Prasad and Chiueh’s [106] solution of adding a debug interrupt call can be applied as shown
in Fig. 4b.

The program’s transformed flow is displayed in Fig. 4c. Here, the first jump instruction (1) targets
the instrumentation code (2). After prologue instrumentation has been reached, the context is
restored and an unconditional branch back before the call of a_func is performed in (3) through (5).
a_func is executed until the epilogue instrumentation is called by the debug interrupt instruction
in step (7). Debug interrupts are often implemented as software interrupts in general purpose
operating systems. They essentially cause a signal to be raised by the operating system kernel;
therefore, a corresponding signal handler can be registered that is executed in turn in step (8).
Finally, in steps (9) through (11) the signal handler returns to a_func, which eventually returns to
step (12) and thus leaving the instrumentation detour.

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

A survey on binary rewriting 49:23

Fig. 5. Full-translation binary transformation in a stack usage optimization scenario using the LLVM-IR
as intermediate representation. The reassembly step (Code generator) is added to show the impact of its
individual decisions on the final binary output leading to a different code layout.

4.4 Full-translation
Full-translation allows for binary alteration in instruction granularity. Hence, every instruction is a
possible instrumentation point.

Fig. 5 shows the general approach on a stack usage optimization scenario. The goal is to reduce
the stack memory consumption of the example function. First, the input-binary, as a direct result of
the disassembler, is fed into a lifting algorithm, which maps every instruction to a semantically
equivalent intermediate representation statement [6, 31]. In our case, the LLVM [83] intermediate
representation (IR) is used. The local variable created in line 4 of the input-binary block displayed
in Fig. 5 is never used throughout the function; therefore, it is a candidate for removal to save stack
space. Therefore, the IR in block llvm-ir pre transformation is altered in such a way that only a
single local variable is used in the llvm-ir post transformation. Binary transformation is performed
on the IR, which in turn is reassembled using a code generator. Since code generated by different
compilers (e.g., gcc, clang) as well as compiler versions (e.g., gcc 3 vs. gcc 5) might make different
choices regarding what IR instruction is mapped to an actual instruction; the output-binary might
have a different address layout and caching behavior [6]. In our example, the function prologue in
input-binary is changed from “add rsp, 0x10” and “pop rbp” to “leave” by the code generator.
Note that both epilogues are semantically equivalent but lead to a different memory layout of the
transformed binary.

Another source of noise for the semantically equivalent lifting approach is the use of advanced
processor instructions that must be directly supported by the IR, such as the multiply accumulate
instruction on an ARMv7 architecture. The multiply accumulate instruction executes the multi-
plication and addition (i.e., d = (a × b) + c) of three distinct values that are stored at a possibly
distinct target register. It is often used for recurring, but speed oriented operations such as image
filtering. Depending on the lifter’s features the instruction can either be lifted into a semantically
equivalent, or instruction equivalent IR representation. In case an instruction equivalent lifter is
used, the code generator will emit another MLA instruction after transformation. When using a
semantically equivalent lifter this might not be the case. Although an optimizing code generator
can detect the MLA pattern in the IR, it might be the case that an instrumentation point is located

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

49:24 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

after the location of the former MLA instruction. The transformer will add its instrumentation
code, thus preventing an optimization algorithm from detecting the MLA pattern. This will result
in a binary with different memory layout and different execution speed due to the usage of the less
efficient distinct multiply and addition instructions.

Furthermore, when inserting a set of instructions between two operations relying on the integrity
of the flags register, the rewriter must either choose (a) to use instructions not affecting the flags
register, (b) safe the flags register to a spare register if available, or (c) save the flags register onto
the stack. Nevertheless, as stack save and restore operations imply additional two instructions this
is only feasible if larger blocks of instructions are inserted. Additionally, in case of using CISC
machines, spare registers are rare [97].
OM by Srivastava and Wall [5] from 1992 implemented a link-time code manipulation system

that used register transfer level representation to manipulate the program under investigation. The
tool used weighted graphs33 for loop detection in order to move loop invariant before the loop’s
body.

One of the first full-translation based binary rewriters that did not require symbol informationwas
implemented by Larus and Schnarr [81]. Their tool EEL is based on ATOM and lifts binaries into an
unspecified intermediate representation. The approach implemented a callback to instrumentation
code that is not located at a distinct section as it is done in ATOM using a minimal-invasive approach.
Furthermore, unrecognized parts of the binary during disassembly and lifting are stored as backup
in the altered binary producing a high overhead. High space overhead due to keeping backup copies
because of imperfect structural recovery algorithms is a central issue in full-translation approaches.
The first work tackling this issue was done by Wang et al. with Uroboros [142] in 2015 and

Ramblr [141] in 2017. A different idea was developed by Hasabnis and Sekar [55]. The authors’
approach is to utilize machine learning in order to obtain completely and correctly lifted binaries
into gcc’s internal representation RTL. A training data set is generated by tracing the compilers RTL
to assembly code decisions for a large set of compilations of different programs. Their framework
does elastic pattern matching to map recovered instructions and their parameters back into the gcc
intermediate representation RTL when operating on different binaries than those the tool has been
trained with.
Since intermediate representations (IR) are the central component in full-translation binary

transformation, the following paragraphs provide a compact overview on available IRs that are
used throughout the tools mentioned in our paper.

Intermediate representations: The following list presents the most common intermediate repre-
sentations (IRs) together with their availability and properties for the use case of binary rewriting.

REIL [47] is used as IR in IDA-PRO [114] and implements a reduced instruction set of x86,
PowerPC and ARM processors. The reduction results in the most common instruction responsible
for security related bugs. In order to use REIL without IDA, an open source implementation of REIL,
called OpenReil [101] which supports x86 and parts of the ARMv7 architecture including thumb
mode. Currently, 23 instruction are supported by OpenREIL. BAP [24] is a complete binary analysis
framework implementing the intermediate representation BAP. At the time of writing the BAP IR
supports x86, ARM, MIPS and PowerPC CPUs. It was designed to represent all side-effects (flags,
wait cycles, etc.) to enable syntax directed analysis. The semantics have been formally verified to
aid in formal reasoning on program properties. The intermediate representation of LLVM [83]
provides a complete representation of all supported instructions. Unfortunately, it lacks a direct
lifting support, which is thus provided by the lifting frameworkMCSema from trail of bits [100]. The
Tiny Code Generator (TCG) IR used in QEMU supports a wide variety of processor architectures.

33Weighted graphs reflect the recurrence of basic blocks [5].

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

A survey on binary rewriting 49:25

Nevertheless, it is strongly intertwined with QEMU itself [107], making it hard to use it outside
the project. Fortunately, there exists an extracted version of TCG as a library currently supporting
a subset of TCGs features [153]. VEX [138] is the intermediate representation of Valgrind, thus
supporting a wide variety of common processor architectures as well as a subset of specialized
instructions such as x86 MMX. It is successfully used in the angr [121] binary analysis framework.
An exception from the traditional approaches is LISC. LISC learns instructions semantics to form
an IR from compiled binaries [56], thus achieving a higher instruction coverage rate. However, its
success varies greatly with the diversity of the supplied test data.

5 CODE GENERATION
The code generation step integrates the changes made during the transformation step into an
executable binary. This can be done temporarily in a non-persistent (dynamic) binary rewriting
scheme, or durably in a persistent approach. While a temporary rewriting attempt only has to make
the instrumentation code reachable during execution (A), a persistent solution must either integrate
the instrumentation code persistently into an existing binary (B) and alter its administrative
components, or generate a completely new binary from scratch (C).

(A) Making instrumentation code reachable during execution: At the end of the transformation step
in Section 4.2, step (c), the intended instrumentation code is ready to be inserted in the program flow
at the instrumentation point. First, the instrumentation code is fed to a just-in-time (JIT) assembler
(see [23]). Next, the binary snippet is placed into a newly allocated buffer that is configured to have
execution permissions34. Finally, the branch target of the instrumentation point is altered making
the new code reachable during execution.

(B) Integrating instrumentation code persistently into an existing binary: This approach causes
some overhead in terms of disk size depending on the used transformation technique covered
in Section 4. If a minimal-invasive algorithm has been employed, the instrumentation snippet
is fed into an assembler and added into a new section within the altered binary. Moreover, the
VMA (virtual memory address) of the newly added section must be associated with an executable
segment when running Unix based operating systems. This can be achieved by using the binutils
bfd [129] and elf [132] library. In case of Windows, the newly created section must be registered at
the section table [105].
In case a full-translation approach is utilized, the binary under investigation must be fully

recreated. However, due to the challenges regarding the analysis steps (e.g., the indirect branch
resolution problem, parts of the binary might not have been identified as code or data at all. Since
these parts are likely to be vital for the proper function of the binary, they still have to be integrated
in the rewritten binary. This can be done by interpreting an unidentified binary stream as both
code and data and put it in both sections (.data, .text) during code generation. Although, this
possibly results in a significant overhead, it resolves the indirect branch resolution problem, as
all variables occurring in the unidentified binary blob can be referenced in its data section copy.
Furthermore, all indirect branches can be resolved to the blob’s text section copy. Nevertheless, the
code generation part must be executed by an altered code generator that has knowledge about the
original binary’s layout [102]. This is mainly caused by the fact that binaries have no concept of
symbols and labels [142] which are required by a commercially available off-the-shelf assembler to
create a fully functional binary from source code.

34Today, the execution of code stemming from the data section of a program is often prohibited for security reasons.
However, it is possible to set certain pages that previously were set to non executable to executable again

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

49:26 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

(C) Generating a completely new binary off the shelf: Throwing away the old binary file and
creating a completely new one after the transformation step is a method to keep the additional
overhead small (e.g. backup copies of unidentified raw binary snippets). The success of this approach
is directly related to the success of the recovery strategies executed during the analysis steps. The
so-called reassembling procedure itself is direct [141]. First, labels are distributed to all recovered
symbols and symbolizable immediates. Then the augmented disassembly can be put into a single
file and fed to an commercially off-the-shelf disassembler such as nasm35.

6 CATEGORIZATION
So far, we have covered all main steps in performing binary writing, their problems and the
techniques attempting to solve them.What is still missing is amapping between themain application
domains, the basic techniques and the tools implementing these solutions (see Table 1 and Fig. 6).
The 67 publications present an overview on the available tools and papers concerning either
persistent or non-persistent binary rewriting, covering a period from 1966 to 2018.
The items in the pool of publications are sorted with respect to their year of publication and

categorized according to their overall use case-Emulation, Optimization, Observation, or Hardening.
Furthermore, the category Generic was added to reflect solutions that have been implemented with
a versatile usage in mind.
Table 1 displays the architecture of the respective transformation procedure, the operating

system the tool is executed on, the applied structural recovery mechanisms and the realized level
of persistence. The resulting categorization allows us to provide a comprehensive overview with
respect to the most distinguishable features the investigated publications offer.
Table 1. List of publications under comparison with the column Tool/Author showing either the respective
tool’s name, or the publication authors in the form ”{first paper author} et al.”. Adjacent, column Structural
recovery providing additional information on the structural recovery techniques used. Column Aim shows
the tools initial application scenario as introduced in Section 1. Besides the terms Emulation, Observation,
Optimization and Hardening, the category Generic was added to indicate the tool’s intended versatile usability.
Finally, column Pers. shows if the respective paper allows for persistent binary rewriting.

Tool/Author Ref. Year Arch. System Structural recovery Aim Pers.

1 Liberator [63] 1966 IBM1400/Honeywell
200

honeywell os direct translation due to ISA compatibility Emulation yes

2 Pixie [130] 1986 risc unix address translation table (indirect jumps) Optimization yes
3 Bergh et al. [20] 1987 HP3000 unix symbol table Emulation yes
4 Mimic [89] 1987 cisc system/370 os’s run-time Emulation yes
5 Bedichek et al. [18] 1990 motorola 88000 vunix run-time Emulation no
6 Johnson et al. [68] 1990 risc unix symbol table Optimization yes
7 Accelerator [7] 1992 risc unix run-time as fallback Emulation yes
8 OM [5] 1992 risc unix symbol table Optimization yes
9 Hollingsworth et al. [62] 1994 risc unix run-time Optimization no
10 Shade [36] 1995 sparcv8 sparcv8 run-time Emulation no
11 Wahbe et al. [54] 1995 mips, sparc ultrix symbol table Emulation yes
12 TIBBIT [37] 1995 motorola 68000 ibm rs6000,

aix3.2
run-time Emulation yes

13 EEL [81] 1995 x86 windows pattern matching, backward slicing (indi-
rect jumps)

Generic yes

14 ATOM [128] 1997 risc unix symbol table Generic yes
15 Etch [112] 1997 x86 windows unspecified Optimization yes
16 Kerninstd [131] 1999 solaris solaris run-time Generic no
17 DynInst I [25] 2000 x86-64, powerpc,

armv8
windows, linux run-time Optimization no

18 UQBT [33] 2000 x86, sparc, jvm windows, linux pattern Emulation yes
19 Vulcan [49] 2001 x86 windows run-time/pattern matching Optimization yes
20 Kiriansky et al. [75] 2002 solaris solaris run-time Hardening no
21 STRATA [119] 2003 x86, mips, sparc linux, unix run-time Emulation no
22 Prasad et al. [106] 2003 x86 linux pattern matching Hardening yes

Continued on next page

35http://www.nasm.us/

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

http://www.nasm.us/

A survey on binary rewriting 49:27

Table 1 – continued from previous page
Tool/Author Ref. Year Arch. System Structural recovery Aim Pers.

23 DynamoRIO [23] 2003 x86 windows, linux run-time Generic no
24 Diablo [45] 2004 arm linux heuristics Optimization yes
25 Pin [84] 2005 x86-64, arm, ita-

nium
linux run-time Generic no

26 Ligatti et al. [1] 2005 x86 windows run-time/pattern matching Hardening yes
27 LANCET [139] 2005 arm linux heuristics Optimization yes
28 Hu et al. [65] 2006 x86, mips, sparc linux, unix run-time Hardening no
29 BIRD [96] 2006 x86 windows pattern matching Hardening both
30 PittSFIeld [90] 2006 x86 linux pattern matching, forced instruction align-

ment
Hardening yes

31 Valgrind [98] 2007 arm, mips, x86,
ppc32, s390

linux, unix run-time Observation no

32 BitBlaze [126] 2008 x86, arm linux VSA (indirect jumps), SSA analysis Hardening no
33 Jakstab [72] 2008 x86 windows abstract interpretation, bounded address

tracking (pointer type/integer distinction)
Generic no

34 Pebil [82] 2010 x86 linux pattern matching Observation yes
35 SecondWrite [102] 2011 x86 linux speculation Hardening yes
36 Howard [123] 2011 x86 linux VSA, abstract interpretation, abstract data

structure identification, (bounded) pointer
tracking

Observation yes

37 ROPdefender [42] 2011 x86 linux run-time Hardening no
38 BAP [24] 2011 x86, arm linux VSA (indirect jumps), supports for ist anal-

ysis SSA
Observation no

39 STIR [144] 2012 x86 windows, linux pattern matching, heuristics (from ida) Hardening yes
40 REINS [145] 2012 x86 windows, linux pattern matching, heuristics (from ida) Hardening yes
41 BinArmor [124] 2012 x86 linux VSA, abstract interpretation, abstract data

structure identification, (bounded) pointer
tracking

Hardening yes

42 CFFIR [156] 2013 x86 windows pattern matching Hardening yes
43 SLX [111] 2013 x86 linux run-time Hardening no
44 Anand et al. [6] 2013 x86 linux speculation, dynamic exec. (indirect jumps),

SVA
Generic yes

45 MADRAS [137] 2013 x86-64 linux pattern matching Generic yes
46 Smithson et al. [125] 2013 x86 linux speculation, added dynamic exec. (indirect

jumps)
Generic yes

47 FPGate [155] 2013 x86 linux pattern matching Hardening yes
48 Zhang et al. [158] 2013 x86 linux pattern matching Hardening yes
49 PSI [157] 2014 x86 linux pattern matching Hardening yes
50 Davidson et al. [43] 2015 x86, mips, sparc linux run-time Hardening no
51 VTInt [154] 2015 x86 linux pattern matching Hardening yes
52 Lockdown [104] 2015 x86 linux run-time, pattern matching, data section

checks to find static pointers to instructions
Hardening no

53 UROBOROS [142] 2015 valgrind linux, unix backward slicing, VSA, heuristics, symbolic
execution

Generic yes

54 Davidson et al. [44] 2016 x86 linux run-time Hardening no
55 Kevlar [53] 2016 x86 linux run-time Generic yes
56 Hawkins et al. [58] 2016 x86-64 linux run-time Hardening yes
57 Dyninst II [48] 2016 x86-64, ppc64,

sparc, arm64
linux, unix, win-
dows

run-time, pattern matching, machine-
learning

Generic both

58 Wang et al. [143] 2017 x86 QEMU run-time Emulation no
59 Zipr [57] 2017 x86-64 linux run-time Hardening yes
60 rev. ng [46] 2017 QEMU QEMU simple expression tracking, offset range

data flow analysis
Hardening yes

61 Ramblr [141] 2017 QEMU QEMU backward slicing, VSA, heuristics, symbolic
execution

Observation yes

62 CFI CaRE [99] 2017 armv8 armv8 patternmatching on function epilogues and
prologues

Hardening yes

63 RevARM [71] 2017 arm arm pattern-matching, backward slicing (indi-
rect jumps)

Hardening yes

64 QDIME [10] 2017 x86-64, arm, ita-
nium

linux run-time Observation no

65 RL-Bin [88] 2017 x86 linux speculation, added dynamic exec. (indirect
jumps)

Generic yes

66 Zipr++ [61] 2017 x86-64 linux run-time Hardening yes
67 Multiverse [17] 2018 x86 linux iterative linear sweep Generic yes

In order to provide a better insight in each tool’s entanglement with the used disassembly
approach, structural recovery mechanism, and transformation approach, Fig. 6 depicts a Sankey
diagram starting from the uncategorized pool of 67 publications on the left-hand side. We show
the first categorization step into the tools’ primary application domain, the disassembly algorithm
of choice, the selected structural recovery mechanism, and the utilized transformation schema.
The numbers shown in the Sankey diagram reflect the publications’ index number in Table 1.

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

49:28 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

li
n
.
&

 r
e
c
.

li
n
e
a
r

p
a
tt

e
rn

re
c
.

l.
r.

d
.

r.
d
.

d
y
n
a
m

ic

e
la

b
o
ra

te
s
y
m

ta
b
.

r.
p
.

ru
n

-t
im

e

linked-bbs

m-i

llvm

own

vex & llvm

rtl

vex

code-cache

ada

Disassembly Structural recovery Transformation67

Publications

emulation

hardening

generic

observation

optimization

Initial Application

domain

direct

20,28,

37,43,

50,52,

54,56,66

32,33,

35,38,

39,40,

41,44,

46,53,

60,61,

62,63,65

22,29,

34,42,

47,48,49,

51

22,29,

32,35,

39,40,

41,42,

48,49,

51,60,

62,63

26
19

30

33,44,

46,53,65

16,23,

25,55,57

14,45,67

13

34,38,61

31,64

36
59

8,15,

24,27

2

6,9,17

1,3,

4,5,

7,10,

11,12,21,

58

18

19,26

36,59
52

1,4,

5,7,

9,10,

12,16,

17,20,

21,23,

25,28,

31,37,

43,50,

54,55,

56,57,

58,64,66

3,6,11

24,27,67

15,18,48

8,14,30

2

13

35,38,

44,46,

59,65

24,27,

33,63

36,39,

40,41,62

13,52,67

53,60,61

32

19,26
18

15

29

22,34,

42,45,

47,48,49,

51

55,56,

58,66

9,16,17

2

1,4,

5,7,10,

12

20,21,

23,25,

28,37,

43,50,

54,57,64

8,14

3,6,

11,30

31

22,29,

32,35,

39,40,

41,42,

48,49,

51,60,

62,63
26

20,28,

37,43,

50,52,

54,56,66

59

30

33,44,

46,53,65

16,23,

25,55,57

14,45,67

13

34,38,61

36
31,64

19

6,9,17

8,15,

24,27

2

1,3,

4,5,

7,10,

11,12,21,

58
18

32,33,

35,38,

39,40,

41,44,

46,53,

60,61,

62,63,65

22,29,

34,42,

47,48,49,

51

19,26

36,59

52

3,6,11

1,4,

5,7,

9,10,

12,16,

17,20,

21,23,

25,28,

31,37,

43,50,

54,55,

56,57,

58,64,66

8,14,30

2
13

15,18,48

24,27,67

8,14

3,6,

11,30

1,4,

5,7,10,

12
55,56,

58,66

20,21,

23,25,

28,37,

43,50,

54,57,64

15

31
2

29

9,16,17

22,34,

42,45,

47,48,49,

51

18

19,26

24,27,

33,63

36,39,

40,41,62

35,38,

44,46,

59,65

13,52,67

53,60,61

32

Fig. 6. Sankey diagram further categorizing the publications listed in Table 1, starting from an unsorted pool
of 67 publications. The adjacent row depicts the tool’s application domain, followed by its used disassembly,
structural recovery and transformation strategy. Each number displayed in this figure represents the index
number in Table 1. For example, the publication with the index number 11 in Table 1 residing in the Emulation
domain implements a dynamic disassembly approach together with a symbol table based algorithm for
structural recovery and implements a direct transformation scheme. Regarding the three columnsDisassembly,
Structural recovery and Transformation, the adjacent abbreviations have the following meaning: lin. → linear
sweep; rec. → recursive traversal; r.d. → recursive traversal & dynamic; l.r.d. → linear sweep & recursive
traversal & dynamic; dyn. → dynamic; symtab. → symbol table; m-i → minimal-invasive; linked-bbs →
linked list of basic blocks. Furthermore, the direct transformation scheme references rewriting approaches
that directly alter the instructions of interest without any kind of administrative structures. In case the
approach implements a full-translation transformation scheme the utilized intermediate representation is
displayed instead of the term full-translation to further detail the comparison.

Furthermore, as can be seen in Fig. 6, besides 29 dynamic disassembly approaches, 23 publications
implement mixed linear-sweep/recursive traversal static disassemblers, forming the two most
popular disassembly approaches. Considering the largest group of the remaining publications,
linear-only disassembly is implemented by 9 tools.
In the structural recovery step, 27 out of 29 tools implementing dynamic disassembly utilize

runtime structural recovery. The 34 tools using the mixed static disassembly approach split into
structural recovery approaches utilizing pattern matching (11), elaborate (19), symbol table based
(3), and run-time (1) based techniques. Pattern matching based structural recovery furthermore
includes the remaining disassembly ideas.

The fourth column of Fig. 6 lists 24 publications that show a large diversification of full-translation
approaches consisting of LLVM, own IRs, VEX, gcc register transfer level (RTL) and ADA (the
programming language) as well as VEX and LLVM hybrids. The second largest group is constituted

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

A survey on binary rewriting 49:29

by minimal-invasive rewriting tools (16) followed by code-cache based tools (11) and rewriters
employing direct strategies (11). Additionally, 46 out of 67 publications implement a persistent
binary transformation scheme, with BIRD [96] and Dyninst [48] being able to do both as shown in
Table 1.

7 CONCLUSION
In this survey, we provided an in-depth overview on the development and the state of the art
in binary rewriting. Our work covers a time period from 1966 to 2018, beginning with one of
the first rewriting programs like Honeywell’s [63] dynamic translation utilities and the static
instrumenter Pixie [130], to tools like Ramblr [141] that are able to use a standard assembler for
code generation, or the superset disassembly based approach implemented by Multiverse [17]. We
addressed the necessary steps for binary rewriting in detail, namely disassembly, structural recovery,
transformation and code generation.

In our analysis, we categorized 67 publications directly related with binary rewriting tools within
the identified areas of application (emulation, observation, optimization hardening, and generic) with
respect to used techniques in each of the steps mentioned above. We discussed their particular
challenges as well as their solutions, which further revealed the following incomplete list of open
research challenges.

Analysis. Regarding the disassembly step, for CISC architectures the detection of instruction
boundaries is still an open problem. Furthermore, the reliable distinction between data and code
is of concern. However, this problem is undecidable in the general case. Sound and precise CFG
recovery is believed to be undecidable in the general case [27, 51]. Nevertheless, considering function
recovery, graph based methods as used by Federico and Agosto. [52] and Federico et al. [46] offer
promising results, but still lack precision in the advent of aggressive compiler optimization. While
resolving indirect branches is an undecidable problem in the general case, Bauman et al. [17] showed
that an iterative linear sweep approach in combination with a look up table based attempt and a
dynamic indirect branch resolution scheme is a viable approach to solve this problem. However,
this approach has a high overhead in terms of static memory consumption. The overhead amounts
to 4 times the addressable text section size of the binary under investigation when targeting IA-32
based systems. Hence, another identified challenge is to decrease the memory overhead in static
indirect branch prediction schemes.

Transformation. While full-translation based rewriting schemes allow for the application of vari-
ous reasoning approaches due to the more abstract representation of the binary under investigation,
currently only semantic equivalent lifters are available. Regarding their maturity, we discovered
that only those intermediate representations with a large backing community such as VEX and
LLVM-IR provide the sophistication to support more than a set of core instructions. Although, se-
mantic equivalent lifting is sufficient for many applications, scenarios like altering timing sensitive
applications, performance optimization for throughput-oriented programs, or rewriting software
with real-time requirements would greatly benefit from instruction equivalent lifters. While the
realization of instruction equivalent lifting seems more like an engineering challenge to us, we
believe that the investigation of the additional application scenarios such an addition would make
fall into the category of research challenges. Furthermore, additional extensions to approaches like
Uroboros [142] and Ramblr [141] would aid in lowering the overhead introduced by static binary
rewriting attempts.
While today, the x86 architecture is still the primary target for binary rewriting applications

for reasons like complexity (If we did it here, we can do it everywhere.) and availability, other
architectures like ARM and MIPS, and their particular characteristics draw more and more interest.

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

49:30 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

This might be a challenge especially for low- to mid-end hardware platforms that are employed in
Internet-of-Things environments.

ACKNOWLEDGEMENTS
This work was partly supported by the City of Vienna, MA 23 under the project grant number MA
23-Project 17-06. This work was supported partly by the Christian Doppler Forschungsgesellschaft
(CDG) through the Josef Ressel Center (JRC) project TARGET and the Austrian Research Promotion
Agency (FFG) through the project SBA-K1 (854188). The financial support by the Austrian Federal
Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology
and Development is gratefully acknowledged.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-flow Integrity. In Proceedings of the 12th

ACM Conference on Computer and Communications Security (CCS ’05). ACM, New York, NY, USA, 340–353.
[2] Hiralal Agrawal. 1994. On Slicing Programs with Jump Statements. In Proceedings of the ACM SIGPLAN 1994 Conference

on Programming Language Design and Implementation (PLDI ’94). ACM, New York, NY, USA, 302–312.
[3] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, Principles, Techniques. Addison Wesley 7, 8 (1986),

9.
[4] Frances E. Allen. 1970. Control Flow Analysis. SIGPLAN Not. 5, 7 (July 1970), 1–19.
[5] DavidW.Wall Amitabh Srivastava. 1992. A Practical System for Intermodule Code Optimization at Link-Time. Technical

Report. Digital Western Research Laboratory.
[6] Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha, Jim Gruen, Nathan Giles, and Rajeev Barua. 2013.

A Compiler-level Intermediate Representation Based Binary Analysis and Rewriting System. In Proceedings of the 8th
ACM European Conference on Computer Systems (EuroSys ’13). ACM, New York, NY, USA, 295–308.

[7] Kristy Andrews and Duane Sand. 1992. Migrating a CISC computer family onto RISC via object code translation. In
ACM Sigplan Notices, Vol. 27. ACM, 213–222.

[8] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia Slowinska, and Herbert Bos. 2016. An In-Depth Analysis of
Disassembly on Full-Scale x86/x64 Binaries. In USENIX Security Symposium.

[9] Dennis Andriesse, Asia Slowinska, and Herbert Bos. 2017. Compiler-Agnostic Function Detection in Binaries. In IEEE
European Symposium on Security and Privacy.

[10] P. Arafa, G. M. Tchamgoue, H. Kashif, and S. Fischmeister. 2017. QDIME: QoS-Aware Dynamic Binary Instrumentation.
In 2017 IEEE 25th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS). 132–142.

[11] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. 1999. Transparent dynamic optimization: The design and
implementation of Dynamo. Technical Report. Hewlett-Packard.

[12] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. 2011. Dynamo: a transparent dynamic optimization system.
Acm Sigplan Notices 46, 4 (2011), 41–52.

[13] Gogul Balakrishnan and Thomas Reps. 2004. Analyzing memory accesses in x86 executables. In Compiler Construction.
Springer, 2732–2733.

[14] Gogul Balakrishnan and Thomas Reps. 2010. WYSINWYX: What You See is Not What You eXecute. ACM Trans.
Program. Lang. Syst. 32, 6, Article 23 (Aug. 2010), 84 pages.

[15] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A Survey of
Symbolic Execution Techniques. ACM Comput. Surv. 51, 3, Article 50 (May 2018), 39 pages.

[16] Tiffany Bao, Johnathon Burket, Maverick Woo, Rafael Turner, and David Brumley. 2014. Byteweight: Learning to
recognize functions in binary code. USENIX.

[17] Erick Bauman, Zhiqiang Lin, and Kevin Hamlen. 2018. Superset Disassembly: Statically Rewriting x86 Binaries
Without Heuristics. In Proceedings of the 25th Annual Network and Distributed System Security Symposium (NDSS’18).
San Diego, CA.

[18] Robert Bedichek. 1990. Some efficient architecture simulation techniques. In Proceedings of the Winter 1990 USENIX
Conference. 53–64.

[19] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In USENIX Annual Technical Conference, FREENIX
Track. 41–46. https://www.usenix.org/legacy/event/usenix05/tech/freenix/full_papers/bellard/bellard_html/

[20] Arndt B Bergh, Keith Keilman, Daniel J Magenheimer, and James A Miller. 1987. Hp-3000 emulation on hp precision
architecture computers. Hewlett-Packard Journal 38, 11 (1987), 87–89.

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

https://www.usenix.org/legacy/event/usenix05/tech/freenix/full_papers/bellard/bellard_html/

A survey on binary rewriting 49:31

[21] Andrew R. Bernat and Barton P. Miller. 2011. Anywhere, Any-time Binary Instrumentation. In Proceedings of the 10th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools (PASTE ’11). ACM, New York, NY, USA,
9–16.

[22] David W Binkley and Keith Brian Gallagher. 1996. Program slicing. Advances in Computers 43 (1996), 1–50.
[23] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003. An infrastructure for adaptive dynamic optimiza-

tion. In Code Generation and Optimization, 2003. CGO 2003. International Symposium on. IEEE, 265–275.
[24] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. 2011. BAP: A Binary Analysis Platform.

Springer Berlin Heidelberg, Berlin, Heidelberg, 463–469.
[25] Bryan Buck and Jeffrey K Hollingsworth. 2000. An API for runtime code patching. The International Journal of High

Performance Computing Applications 14, 4 (2000), 317–329.
[26] Juan Caballero and Zhiqiang Lin. 2016. Type Inference on Executables. ACM Comput. Surv. 48, 4, Article 65 (May

2016), 35 pages.
[27] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R Gross. 2015. Control-Flow Bending:

On the Effectiveness of Control-Flow Integrity. In USENIX Security Symposium. 161–176.
[28] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. 2012. Unleashing Mayhem on Binary Code. In 2012 IEEE Symposium

on Security and Privacy. 380–394.
[29] D. Chanet, B. De Bus, B. De Sutter, L. Van Put, and K. De Bosschere. 2005. DIABLO: a reliable, retargetable and

extensible link-time rewriting framework. In 2005 IEEE International Symposium on Signal Processing and Information
Technology(ISSPIT), Vol. 00. 7–12.

[30] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David M Gillies. 2000. Mojo: A dynamic optimization system. In
3rd ACM Workshop on Feedback-Directed and Dynamic Optimization (FDDO-3). 81–90.

[31] David Chisnall. 2013. The challenge of cross-language interoperability. Commun. ACM 56, 12 (2013), 50–56.
[32] Cifuentes and Malhotra. 1996. Binary translation: static, dynamic, retargetable?. In 1996 Proceedings of International

Conference on Software Maintenance. 340–349.
[33] C. Cifuentes and M. Van Emmerik. 2000. UQBT: adaptable binary translation at low cost. Computer 33, 3 (Mar 2000),

60–66.
[34] C. Cifuentes and A. Fraboulet. 1997. Intraprocedural static slicing of binary executables. In 1997 Proceedings Interna-

tional Conference on Software Maintenance. 188–195.
[35] Cristina Cifuentes, Brian Lewis, and David Ung. 2002. Walkabout: A retargetable dynamic binary translation framework.

Technical Report. Sun Microsystems, Inc.
[36] Bob Cmelik and David Keppel. 1995. Shade: A fast instruction-set simulator for execution profiling. In Fast Simulation

of Computer Architectures. Springer, 5–46.
[37] Bryce H Cogswell and Z Segall. 1995. Timing insensitive binary-to-binary migration across multiprocessor architec-

tures. In wpdrts. IEEE, 193.
[38] Lucian Cojocar, Taddeus Kroes, and Herbert Bos. 2017. JTR: A Binary Solution for Switch-Case Recovery. Springer

International Publishing, Cham, 177–195.
[39] DATAPRO RESEARCH CORPORATION. 1974. Honeywell Series 200 and 2000. www.bitsavers.org/pdf/honeywell/

datapro/70C-480-01_7404_Honeywell_200_2000.pdf
[40] Patrick Cousot and Radhia Cousot. 1992. Abstract interpretation frameworks. Journal of logic and computation 2, 4

(1992), 511–547.
[41] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle,

Qian Zhang, and Heather Hinton. 1998. Stackguard: automatic adaptive detection and prevention of buffer-overflow
attacks. In USENIX Security Symposium, Vol. 98. San Antonio, TX, 63–78.

[42] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2011. ROPdefender: A detection tool to defend against
return-oriented programming attacks. In Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security. ACM, 40–51.

[43] J. W. Davidson, J. Hiser, A. Nguyen-Tuong, M. Co, B. D. Rodes, and J. C. Knight. 2015. Security protection of binary
programs. In 10th IET System Safety and Cyber-Security Conference 2015. 1–6.

[44] J. W. Davidson, J. D. Hiser, A. Nguyen-Tuong, C. L. Coleman, W. H. Hawkins, J. C. Knight, B. D. Rodes, and A. B.
Hocking. 2016. A System for the Security Protection of Embedded Binary Programs. In 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshop (DSN-W). 234–237.

[45] Bruno De Bus, Bjorn De Sutter, Ludo Van Put, Dominique Chanet, and Koen De Bosschere. 2004. Link-time
Optimization of ARM Binaries. SIGPLAN Not. 39, 7 (June 2004), 211–220.

[46] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. 2017. rev. ng: a unified binary analysis framework to
recover CFGs and function boundaries. In Proceedings of the 26th International Conference on Compiler Construction.
ACM, 131–141.

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

www.bitsavers.org/pdf/honeywell/datapro/70C-480-01_7404_Honeywell_200_2000.pdf
www.bitsavers.org/pdf/honeywell/datapro/70C-480-01_7404_Honeywell_200_2000.pdf

49:32 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

[47] Thomas Dullien and Sebastian Porst. 2009. REIL: A platform-independent intermediate representation of disassembled
code for static code analysis. http://www.zynamics.com/downloads/csw09.pdf

[48] Dyninst Developers. 2016. DynInst - Dynamic Instrumentation Framework. http://www.dyninst.org/parse
[49] Andrew Edwards, Hoi Vo, Amitabh Srivastava, and Amitabh Srivastava. 2001. Vulcan Binary transformation in a

distributed environment. Technical Report.
[50] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket execution: Dynamic similarity

testing for program binaries and components. USENIX.
[51] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard, Hamed Okhravi, and Stelios Sidiroglou-

Douskos. 2015. Control jujutsu: On the weaknesses of fine-grained control flow integrity. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security. ACM, 901–913.

[52] A. Di Federico and G. Agosta. 2016. A jump-target identificationmethod for multi-architecture static binary translation.
In 2016 International Conference on Compliers, Architectures, and Sythesis of Embedded Systems (CASES). 1–10.

[53] Jack W. Davidson John C. Knight Michele Co Jason D. Hiser Anh Gguyen-Tuong. 2016. KEVLAR: TRANSITIONING
HELIX FROM RESEARCH TO PRACTICE. Technical Report.

[54] Susan L Graham, Steven Lucco, and Robert Wahbe. 1995. Adaptable Binary Programs. In USENIX. 315–325.
[55] Niranjan Hasabnis and R Sekar. 2015. Automatic generation of assembly to IR translators using compilers. InWorkshop

on Architectural and Microarchitectural Support for Binary Translation.
[56] Niranjan Hasabnis and R. Sekar. 2016. Lifting Assembly to Intermediate Representation: A Novel Approach Leveraging

Compilers. SIGOPS Oper. Syst. Rev. 50, 2 (March 2016), 311–324.
[57] W. H. Hawkins, J. D. Hiser, M. Co, A. Nguyen-Tuong, and J. W. Davidson. 2017. Zipr: Efficient Static Binary Rewriting

for Security. In 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
559–566.

[58] William H. Hawkins, Jason D. Hiser, and Jack W. Davidson. 2016. Dynamic Canary Randomization for Improved
Software Security. In Proceedings of the 11th Annual Cyber and Information Security Research Conference (CISRC ’16).
ACM, New York, NY, USA, Article 9, 7 pages.

[59] Kim Hazelwood. 2011. Dynamic binary modification: Tools, techniques, and applications. Synthesis Lectures on
Computer Architecture 6, 2 (2011), 1–81.

[60] Kim Hazelwood and Artur Klauser. 2006. A dynamic binary instrumentation engine for the ARM architecture. In
Proceedings of the 2006 international conference on Compilers, architecture and synthesis for embedded systems. ACM,
261–270.

[61] Jason Hiser, Anh Nguyen-Tuong, William Hawkins, Matthew McGill, Michele Co, and Jack Davidson. 2017. Zipr++:
Exceptional Binary Rewriting. In Proceedings of the 2017 Workshop on Forming an Ecosystem Around Software Trans-
formation (FEAST ’17). ACM, New York, NY, USA, 9–15.

[62] J. K. Hollingsworth, B. P. Miller, and J. Cargille. 1994. Dynamic program instrumentation for scalable performance
tools. In Proceedings of IEEE Scalable High Performance Computing Conference. 841–850.

[63] Honeywell Inc. 1966. Honeywell Series 200 Operating Systems. Online. http://s3data.computerhistory.org/brochures/
honeywell.osorientationmgmt.1966.102646090.pdf

[64] R. Nigel Horspool and Nenad Marovac. 1980. An approach to the problem of detranslation of computer programs.
Comput. J. 23, 3 (1980), 223–229.

[65] Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W Davidson, David Evans, John C Knight, Anh Nguyen-Tuong,
and Jonathan Rowanhill. 2006. Secure and practical defense against code-injection attacks using software dynamic
translation. In Proceedings of the 2nd international conference on Virtual execution environments. ACM, 2–12.

[66] Intel Inc. 2016. Intel XED. https://intelxed.github.io/
[67] Josh Poimboeuf Seth Jennings. 2014. Kpatch. http://rhelblog.redhat.com/2014/02/26/kpatch/
[68] Stephen C Johnson. 1990. Postloading for fun and profit. In Proceedings of the Winter’90 USENIX Conference. 325–330.
[69] Randy Kath. 1992. The Debugging Application Programming Interface. https://msdn.microsoft.com/en-us/library/

ms809754.aspx
[70] Gary A. Kildall. 1973. A Unified Approach to Global Program Optimization. In Proceedings of the 1st Annual ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL ’73). ACM, New York, NY, USA, 194–206.
[71] Taegyu Kim, Chung Hwan Kim, Hongjun Choi, Yonghwi Kwon, Brendan Saltaformaggio, Xiangyu Zhang, and

Dongyan Xu. 2017. RevARM: A Platform-Agnostic ARM Binary Rewriter for Security Applications. In Proceedings of
the 33rd Annual Computer Security Applications Conference (ACSAC 2017). ACM, New York, NY, USA, 412–424.

[72] Johannes Kinder and Helmut Veith. 2008. Jakstab: A static analysis platform for binaries. In International Conference
on Computer Aided Verification. Springer, 423–427.

[73] Johannes Kinder and Helmut Veith. 2010. Precise static analysis of untrusted driver binaries. In Formal Methods in
Computer-Aided Design (FMCAD), 2010. IEEE, 43–50.

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

http://www.zynamics.com/downloads/csw09.pdf
http://www.dyninst.org/parse
http://s3data.computerhistory.org/brochures/honeywell.osorientationmgmt.1966.102646090.pdf
http://s3data.computerhistory.org/brochures/honeywell.osorientationmgmt.1966.102646090.pdf
https://intelxed.github.io/
http://rhelblog.redhat.com/2014/02/26/kpatch/
https://msdn.microsoft.com/en-us/library/ms809754.aspx
https://msdn.microsoft.com/en-us/library/ms809754.aspx

A survey on binary rewriting 49:33

[74] Johannes Kinder, Florian Zuleger, and Helmut Veith. 2009. An abstract interpretation-based framework for control flow
reconstruction from binaries. In International Workshop on Verification, Model Checking, and Abstract Interpretation.
Springer, 214–228.

[75] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe. 2002. Secure Execution via Program Shepherding.
In Proceedings of the 11th USENIX Security Symposium. USENIX Association, Berkeley, CA, USA, 191–206.

[76] A. Kiss, J. Jasz, G. Lehotai, and T. Gyimothy. 2003. Interprocedural static slicing of binary executables. In Proceedings
Third IEEE International Workshop on Source Code Analysis and Manipulation. 118–127.

[77] B. Korel and J. Laski. 1988. Dynamic Program Slicing. Inf. Process. Lett. 29, 3 (Oct. 1988), 155–163.
[78] Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni Vigna. 2004. Static disassembly of obfuscated

binaries. In USENIX security Symposium, Vol. 13. 18–18.
[79] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. 2014. SoK: Automated Software Diversity. In 2014 IEEE Symposium

on Security and Privacy. 276–291.
[80] James R Larus and Thomas Ball. 1994. Rewriting executable files to measure program behavior. Software: Practice and

Experience 24, 2 (1994), 197–218.
[81] James R. Larus and Eric Schnarr. 1995. EEL: Machine-independent Executable Editing. SIGPLAN Not. 30, 6 (June

1995), 291–300.
[82] Michael A Laurenzano, Mustafa M Tikir, Laura Carrington, and Allan Snavely. 2010. Pebil: Efficient static binary

instrumentation for linux. In Performance Analysis of Systems & Software (ISPASS), 2010 IEEE International Symposium
on. IEEE, 175–183.

[83] LLVM Compiler Infrastructure. [n. d.]. LLVM Language Reference Manual. http://llvm.org/docs/LangRef.html
[84] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa

Reddi, and Kim Hazelwood. 2005. Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’05).
ACM, New York, NY, USA, 190–200.

[85] Chi-Keung Luk, Robert Muth, Harish Patil, Robert Cohn, and Geoff Lowney. 2004. Ispike: A Post-link Optimizer for
the Intel Itanium Architecture. In Proceedings of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO ’04). IEEE Computer Society, Washington, DC, USA, 15–.

[86] T. Lundqvist and P. Stenstrom. 1999. Timing anomalies in dynamically scheduled microprocessors. In Proceedings
20th IEEE Real-Time Systems Symposium (Cat. No.99CB37054). 12–21.

[87] Jonas Maebe, Michiel Ronsse, and Koen De Bosschere. 2002. DIOTA: Dynamic instrumentation, optimization and
transformation of applications. In Compendium of Workshops and Tutorials held in conjunction with PACTâĂŹ02.

[88] Amir Majlesi-Kupaei, Danny Kim, Kapil Anand, Khaled ElWazeer, and Rajeev Barua. 2017. RL-Bin, Robust Low-
overhead Binary Rewriter. In Proceedings of the 2017 Workshop on Forming an Ecosystem Around Software Transforma-
tion (FEAST ’17). ACM, New York, NY, USA, 17–22.

[89] Cathy May. 1987. Mimic: a fast system/370 simulator. Vol. 22. ACM.
[90] Stephen McCamant and Greg Morrisett. 2006. Evaluating SFI for a CISC Architecture. In USENIX Security Symposium.

https://www.usenix.org/legacy/event/sec06/tech/mccamant/mccamant_html/
[91] Xiaozhu Meng and Barton P. Miller. 2016. Binary Code is Not Easy. In Proceedings of the 25th International Symposium

on Software Testing and Analysis (ISSTA 2016). ACM, New York, NY, USA, 24–35.
[92] Barton P Miller. 2006. Binary Code Patching: An Ancient Art Refined for the 21st Century. NC State University

Computer Science Department Seminars 2006-2007. http://moss.csc.ncsu.edu/~mueller/seminar/fall06/miller.html
[93] Robert Muth, Saumya K Debray, Scott Watterson, and Koen De Bosschere. 2001. alto: a link-time optimizer for the

Compaq Alpha. Software: Practice and Experience 31, 1 (2001), 67–101.
[94] Glenford J Myers, Corey Sandler, and Tom Badgett. 2011. The art of software testing. John Wiley & Sons.
[95] Susanta Nanda and Tzi-cker Chiueh. 2005. A survey on virtualization technologies. Rpe Report 142 (2005).
[96] S. Nanda, Wei Li, Lap-Chung Lam, and Tzi cker Chiueh. 2006. BIRD: binary interpretation using runtime disassembly.

In International Symposium on Code Generation and Optimization (CGO’06). 12 pp.–.
[97] Nicholas Nethercote. 2004. Dynamic binary analysis and instrumentation. Technical Report UCAM-CL-TR-606.

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-606.pdf
[98] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavyweight dynamic binary instrumentation.

In ACM Sigplan notices, Vol. 42. ACM, 89–100.
[99] Thomas Nyman, Jan-Erik Ekberg, Lucas Davi, and N Asokan. 2017. CFI CaRE: Hardware-Supported Call and Return

Enforcement for Commercial Microcontrollers. In International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 259–284.

[100] Trail of Bits. 2017. MCSema. https://github.com/trailofbits/mcsema
[101] Dmytro Oleksiuk. 2014. OpenREIL. https://github.com/Cr4sh/openreil

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

http://llvm.org/docs/LangRef.html
https://www.usenix.org/legacy/event/sec06/tech/mccamant/mccamant_html/
http://moss.csc.ncsu.edu/~mueller/seminar/fall06/miller.html
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-606.pdf
https://github.com/trailofbits/mcsema
https://github.com/Cr4sh/openreil

49:34 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

[102] Pádraig O’Sullivan, Kapil Anand, Aparna Kotha, Matthew Smithson, Rajeev Barua, and Angelos Keromytis. 2011.
Retrofitting security in cots software with binary rewriting. In IFIP International Information Security Conference.
Springer, 154–172.

[103] Pradeep Padala. 2002. Playing with ptrace, Part I. Linux Journal (2002). http://www.linuxjournal.com/article/6100
[104] Mathias Payer, Antonio Barresi, and Thomas R. Gross. 2015. Fine-Grained Control-Flow Integrity Through Binary

Hardening. Springer International Publishing, Cham, 144–164.
[105] Matt Pietrek. 1994. Peering Inside the PE: A Tour of the Win32 Portable Executable File Format. https://msdn.

microsoft.com/en-us/library/ms809762.aspx
[106] Manish Prasad and Tzi-cker Chiueh. 2003. A Binary Rewriting Defense Against Stack based Buffer Overflow Attacks.

In USENIX Annual Technical Conference.
[107] QemuTCGDevelopers. 2006. Tiny Code Generator (TCG) Documentation. http://wiki.qemu.org/Documentation/TCG
[108] R. Qiao and R. Sekar. 2017. Function Interface Analysis: A Principled Approach for Function Recognition in COTS

Binaries. In 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). 201–212.
[109] Giridhar Ravipati, Andrew R Bernat, Nate Rosenblum, Barton P Miller, and Jeffrey K Hollingsworth. 2007. Toward

the deconstruction of Dyninst. Univ. of Wisconsin, technical report (2007).
[110] Thomas Reps and Gogul Balakrishnan. 2008. Improved memory-access analysis for x86 executables. In Compiler

Construction. Springer, 16–35.
[111] Benjamin D. Rodes, Anh Nguyen-Tuong, Jason D. Hiser, John C. Knight, Michele Co, and Jack W. Davidson. 2013.

Defense against Stack-Based Attacks Using Speculative Stack Layout Transformation. Springer Berlin Heidelberg, Berlin,
Heidelberg, 308–313.

[112] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy, Brian Bershad, and Brad Chen. 1997.
Instrumentation and optimization of Win32/Intel executables using Etch. In Proceedings of the USENIX Windows NT
Workshop, Vol. 1997. 1–8.

[113] Nathan E Rosenblum, Xiaojin Zhu, Barton P Miller, and Karen Hunt. 2008. Learning to Analyze Binary Computer
Code. In AAAI. 798–804.

[114] Hex-Rays SA. 2017. IDA-Pro. https://www.hex-rays.com/products/ida/
[115] B. Schwarz, S. Debray, and G. Andrews. 2002. Disassembly of executable code revisited. In Ninth Working Conference

on Reverse Engineering, 2002. Proceedings. 45–54.
[116] Benjamin Schwarz, Saumya Debray, Gregory Andrews, and Matthew Legendre. 2001. Plto: A link-time optimizer for

the Intel IA-32 architecture. In Proc. 2001 Workshop on Binary Translation (WBT-2001). Citeseer.
[117] Kevin Scott and Jack Davidson. 2001. Strata: A software dynamic translation infrastructure. In IEEE Workshop on

Binary Translation.
[118] Kevin Scott, Jack Davidson, and Kevin Skadron. 2001. Low-overhead software dynamic translation. Technical Report.
[119] Kevin Scott, Naveen Kumar, Siva Velusamy, Bruce Childers, Jack W Davidson, and Mary Lou Soffa. 2003. Retargetable

and reconfigurable software dynamic translation. In Proceedings of the international symposium on Code generation
and optimization: feedback-directed and runtime optimization. IEEE Computer Society, 36–47.

[120] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing Functions in Binaries with Neural Networks.
In USENIX Security Symposium. 611–626.

[121] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and
G. Vigna. 2016. SOK: (State of) The Art of War: Offensive Techniques in Binary Analysis. In 2016 IEEE Symposium on
Security and Privacy (SP). 138–157.

[122] Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and Scott G. Robinson. 1993. Binary Translation.
Commun. ACM 36, 2 (Feb. 1993), 69–81.

[123] Asia Slowinska, Traian Stancescu, and Herbert Bos. 2011. Howard: A Dynamic Excavator for Reverse Engineering
Data Structures. In NDSS.

[124] Asia Slowinska, Traian Stancescu, and Herbert Bos. 2012. Body Armor for Binaries: Preventing Buffer Overflows
Without Recompilation. In USENIX Annual Technical Conference. 125–137.

[125] M. Smithson, K. ElWazeer, K. Anand, A. Kotha, and R. Barua. 2013. Static binary rewriting without supplemental
information: Overcoming the tradeoff between coverage and correctness. In 2013 20th Working Conference on Reverse
Engineering (WCRE). 52–61.

[126] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang, Zhenkai Liang, James Newsome,
Pongsin Poosankam, and Prateek Saxena. 2008. BitBlaze: A New Approach to Computer Security via Binary Analysis.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1–25.

[127] Swaroop Sridhar, Jonathan S Shapiro, Eric Northup, and Prashanth P Bungale. 2006. HDTrans: an open source,
low-level dynamic instrumentation system. In Proceedings of the 2nd international conference on Virtual execution
environments. ACM, 175–185.

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

http://www.linuxjournal.com/article/6100
https://msdn.microsoft.com/en-us/library/ms809762.aspx
https://msdn.microsoft.com/en-us/library/ms809762.aspx
http://wiki.qemu.org/Documentation/TCG
https://www.hex-rays.com/products/ida/

A survey on binary rewriting 49:35

[128] Amitabh Srivastava and Alan Eustace. 1994. ATOM: A system for building customized program analysis tools. Vol. 29.
ACM.

[129] K. Richard Pixley Steve Chamberlain, John Gilmore and David Henkel-Wallace. 1992. Binary File Descripor Library
2.29. binutils package. https://sourceware.org/binutils/docs/bfd/

[130] MIPS Computer Systems. 1986. RISCompiler and C Programmer’s Guide. MIPS Computer Systems, Inc, 930 Arques
Ave., Sunnyvale, California 94086.

[131] Ariel Tamches and Barton P Miller. 1999. Fine-grained dynamic instrumentation of commodity operating system
kernels. In Third Symposium on Operating Systems Design and Implementation.

[132] Elfutils Developer Team. 2017. https://sourceware.org/elfutils/
[133] PaX Team. 2003. PaX address space layout randomization (ASLR). (2003). https://pax.grsecurity.net/docs/aslr.txt
[134] Edward Terry. 2012. Using Liberator. http://ibm-1401.info/1401-Competition.html#UsingLib
[135] TI. 2009. Common Oject File Format. Application Report.
[136] David Ung and Cristina Cifuentes. 2001. Optimising hot paths in a dynamic binary translator. ACM SIGARCH

Computer Architecture News 29, 1 (2001), 55–65.
[137] Cedric Valensi. 2013. MADRAS: Multi-Architecture BInary Rewriting Tool. Technical Report.
[138] Valgrind Development Team. 2000. Valgrind. http://valgrind.org/
[139] Ludo Van Put, Bjorn De Sutter, Matias Madou, Bruno De Bus, Dominique Chanet, Kristof Smits, and Koen De Bosschere.

2005. LANCET: A Nifty Code Editing Tool. SIGSOFT Softw. Eng. Notes 31, 1 (Sept. 2005), 75–81.
[140] David W Wall. 1992. Systems for late code modification. In Code GenerationâĂŤConcepts, Tools, Techniques. Springer,

275–293.
[141] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen, Paul Grosen, Christopher Kruegel,

and Giovanni Vigna. 2017. Ramblr: Making reassembly great again. In Proceedings of the 24th Annual Symposium on
Network and Distributed System Security (NDSS’17).

[142] Shuai Wang, Pei Wang, and Dinghao Wu. 2015. Reassembleable Disassembling. In USENIX Security. 627–642.
[143] Wenwen Wang, Pen-Chung Yew, Antonia Zhai, Stephen McCamant, Youfeng Wu, and Jayaram Bobba. 2017. Enabling

Cross-ISA Offloading for COTS Binaries. In Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’17). ACM, New York, NY, USA, 319–331.

[144] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. 2012. Binary Stirring: Self-randomizing
Instruction Addresses of Legacy x86 Binary Code. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security (CCS ’12). ACM, New York, NY, USA, 157–168.

[145] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. 2012. Securing Untrusted Code via Compiler-
agnostic Binary Rewriting. In Proceedings of the 28th Annual Computer Security Applications Conference (ACSAC ’12).
ACM, New York, NY, USA, 299–308.

[146] Richard Wartell, Yan Zhou, Kevin Hamlen, Murat Kantarcioglu, and Bhavani Thuraisingham. 2011. Differentiating
Code from Data in x86 Binaries. InMachine Learning and Knowledge Discovery in Databases (Lecture Notes in Computer
Science), Vol. 6913. Springer, 522–536.

[147] Mark N Wegman and F Kenneth Zadeck. 1991. Constant propagation with conditional branches. ACM Transactions
on Programming Languages and Systems (TOPLAS) 13, 2 (1991), 181–210.

[148] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th International Conference on Software Engineering (ICSE
’81). IEEE Press, Piscataway, NJ, USA, 439–449.

[149] Mark Weiser. 1982. Programmers Use Slices when Debugging. Commun. ACM 25, 7 (July 1982), 446–452.
[150] David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake, Xinhao Yuan, Patrick Colp, Michelle

Zheng, Vasileios P Kemerlis, Junfeng Yang, and William Aiello. 2016. Shuffler: Fast and Deployable Continuous Code
Re-Randomization. In OSDI. 367–382.

[151] Liang Xu, Fangqi Sun, and Zhendong Su. 2009. Constructing precise control flow graphs from binaries. University of
California, Davis, Tech. Rep (2009).

[152] Eric Youngdale. 1995. The ELF Object File Format: Introduction. http://www.linuxjournal.com/article/1059
[153] Jonas Zaddach. 2014. Libqemu GIT repository. https://github.com/zaddach/libqemu
[154] Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen, and Dawn Song. 2015. VTint: Protecting Virtual

Function Tables’ Integrity. In NDSS.
[155] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Stephen McCamant, and Laszlo Szekeres. 2013. Protecting Function

Pointers in Binary. In Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications
Security (ASIA CCS ’13). ACM, New York, NY, USA, 487–492.

[156] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou. 2013. Practical Control Flow
Integrity and Randomization for Binary Executables. In 2013 IEEE Symposium on Security and Privacy. 559–573.

[157] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R. Sekar. 2014. A Platform for Secure Static Binary Instrumentation.
In Proceedings of the 10th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE ’14).

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

https://sourceware.org/binutils/docs/bfd/
https://sourceware.org/elfutils/
https://pax.grsecurity.net/docs/aslr.txt
http://ibm-1401.info/1401-Competition.html#UsingLib
http://valgrind.org/
http://www.linuxjournal.com/article/1059
https://github.com/zaddach/libqemu

49:36 Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl

ACM, New York, NY, USA, 129–140.
[158] Mingwei Zhang and R Sekar. 2013. Control Flow Integrity for COTS Binaries. In Usenix Security, Vol. 13.

Received May 2018; revised November 2018; accepted February 2019

ACM Comput. Surv., Vol. 52, No. 3, Article 49. Publication date: June 2019.

	Abstract
	1 Overview
	2 Binary rewriting from high orbit
	2.1 The four steps to binary rewriting
	2.2 Static binary rewriting in principle
	2.3 Dynamic binary rewriting in principle

	3 Analysis
	3.1 Disassembly
	3.2 Structural recovery
	3.3 Label, symbol and data type extraction

	4 Transformation
	4.1 Static
	4.2 Dynamic
	4.3 Minimal-invasive
	4.4 Full-translation

	5 Code generation
	6 Categorization
	7 Conclusion
	References

