
Notary-assisted Certificate Pinning for Improved Security of Android Apps

Georg Merzdovnik, Damjan Buhov, Artemios G. Voyiatzis, and Edgar R. Weippl
SBA Research

Vienna, Austria
Email: {gmerzdovnik,dbuhov,avoyiatzis,eweippl}@sba-research.org

Abstract—The security provided to Internet applications
by the TLS protocol relies on the trust we put on Certificate
Authorities (CAs) issuing valid identity certificates. TLS
certificate pinning is a proposed approach to defend against
man-in-the-middle (MitM) attacks that are realized using
valid albeit fraudulent certificates. Yet, the implementation
of certificate pinning for mobile applications, and especially
for Google Android apps, is cumbersome and error-prone,
resulting in inappropriate connection handling and privacy
leaks of user information.

We propose the use of TLS notary-assisted certificate
pinning at the Android Runtime level. Our approach defends
against a wide range of MitM attacks without needing to
update the application using TLS. Furthermore, by relying
on the collective knowledge of the trusted TLS notaries, we
increase both the security and the usability, while at the
same time we remove the burden for the user making trust
decisions about system security issues. We describe a proof-
of-concept implementation demonstrating its capabilities and
discuss the next steps necessary towards general availability
of our solution.

Keywords-Security; TLS; certificate pinning; Google An-
droid; mobile apps; man-in-the-middle attacks

I. INTRODUCTION

The use of mobile devices steadily increases, as they
are becoming a central hub for information collection and
consumption as well as a remote control for the Internet
of Things. An increasing number of developers implement
applications for mobile platforms and thousands of new
applications are published each month. As of May 2016,
the Google Play store offers a total of 2,178,494 apps1.
However, with this huge amount of apps, it is inevitable
that several problems arise. More and more private infor-
mation are collected and transferred via mobile devices.
Therefore, special care has to be taken when this data
transmissions occur over untrusted or potentially mon-
itored networks. This is often the case for smartphone
applications (apps) accessing web content over open WiFi
networks installed in public places [1].

It is, thus, necessary to verify the authenticity of the
remote entity that the application is interacting with, so as
to ensure the protection of the sensitive information. Many
applications and libraries reuse already-deployed web in-
frastructure. A large volume of information is transmitted
using the HTTP protocol. The Transport Layer Security
(TLS) protocol is often used to secure the underlying
network connection, combined into an HTTPS protocol.

1http://www.appbrain.com/stats/number-of-android-apps

TLS certificate pinning is a proposed approach to defend
against man-in-the-middle (MitM) attacks. The imple-
mentation of certificate pinning for mobile applications,
and especially for Google Android apps, is cumbersome
and error-prone. This results in inappropriate connection
handling and privacy leaks of user information.

In this paper, we propose a design to realize TLS notary-
assisted certificate pinning as a means to transparently
defend against MitM attacks on behalf of all installed ap-
plications in a device. The collective knowledge provided
by trusted notary services can increase both the security
and the usability of the Android devices.

The contributions of this paper are the following:
• We describe a new design for implementing certifi-

cate pinning at the Android Runtime layer defending
against a revised threat model with stronger adver-
saries.

• We enrich the certificate pinning decision with TLS
notary-assisted information.

• We evaluate the proposed design and show that both
security and usability are increased without introduc-
ing noticeable overhead.

• We describe a proof-of-concept implementation of
the design for the Google Android platform that
demonstrates its applicability and feasibility.

The rest of the paper is organized in five sections.
Section II provides the necessary background information.
In Section III, we describe the overall design of our
approach and we perform an evaluation of the design
in Section IV. Section V describes a proof-of-concept
implementation of our design, while Section VI provides
a discussion and the conclusions of our work.

II. BACKGROUND

A. TLS and X.509 certificate validation
The goal of the Transport Layer Security (TLS) protocol

is to provide data confidentiality and integrity between
two communicating computer applications. An often-used
example use of TLS is for securing communication be-
tween a web browser (client) and a web site (server). The
protocol is defined in various proposed standards by the
IETF, including among others RFCs 2246, 3546, 4346,
4366, 4680, 4492, 5246, 5288, 5746, 6176, and 6655. The
origins of the TLS protocol date back to 1993, when SSL
v1.0 was defined. The current version is 1.2 and the next
major protocol revision, TLS v1.3, is expected soon [2].

TLS can, optionally, authenticate the identity of the
two communicating parties using public-key cryptography.



This is widely used for at least authenticating the server
side, i.e., for proving that a (web) client indeed connects
with the intended (web) server. The server authenticity
is based on the Internet X.509 Public Key Infrastructure
Certificate, as defined in RFCs 5280 and 6818.

When a client connects to a server over TLS, the server
presents its certificate for proving its identity. The server
certificate should be signed by a certificate authority (CA)
that the client trusts, either explicitly (e.g., by having the
user click on a warning message) or implicitly (e.g., by
consulting its “trust store”, i.e., a set of pre-distributed
“root” certificates through which a chain of trust is built).

All root certificates are considered equally-trusted.
Hence, any of the CAs can issue an equally-valid certifi-
cate for a given server. If any of the CAs is compromised,
then it can be tricked to issue a fake but valid certificate
for a server.

To cope with this inefficiency, various approaches have
been proposed. A Certificate Revocation List (CRL) can
be periodically distributed stating which of the issued
certificates by a CA are not valid anymore. This can still
leave a window of opportunity for an attacker, until a
client updates its CRL. Online Certificate Status Protocol
(OCSP) was proposed to solve this problem by allowing
a client to contact online (at the time of a TLS connection
setup) the CA and verify the validity of the presented cer-
tificate. Yet, this extra connection with a third-party server
can introduce significant latency in page loads, especially
in environments with mobile clients (e.g., smartphones)
connecting over wireless or cellular links. OCSP stapling
(formally, the TLS Certificate Status Request extension,
standardized in RFC 6066) removes some of this burden
by allowing the server to append (staple) a time-stamped
OCSP response signed by the CA during the initial TLS
handshake.

HTTP Public Key Pinning (HPKP) is standardized in
RFC 7469. It allows a server to “pin” the hashes (finger-
prints) of the valid certificates during a connection. On
subsequent connections the client can check the hashes of
the presented certificate. If they do not match the known
ones, then the client can assume that a man-in-the-middle
(MitM) attack is taking place.

HPKP cannot defend against impersonation attacks
mounted when a client visits a previously unknown server.
In this case, even if HPKP is employed by the server
side, the client has to inherently trust the unknown hashes
presented by the MitM attacker.

B. TLS Notary Services

TLS Notary Services (or simply, “notaries”) are a de-
fense against impersonation attacks utilizing crowd knowl-
edge, as collected by notary servers. The key observation
is that an attacker is not able to intercept all possible
communication links with a server and mount MitM at-
tacks. Thus, notaries can collect certificates from different
points of observation (i.e., perform multi-path probing),
which cannot be intercepted concurrently or altogether.
As illustrated in Figure 1, when a client is presented with

Alice

Mallory
Notaries

?

Figure 1. Detecting impersonation attacks using TLS Notary Services

a (possibly impersonated) server certificate, it consults
the publicly-available notaries and compares the received
results in order to detect the attack.

Perspectives2 and Convergence3 are two example imple-
mentations of active notaries. The ICSI Certificate Notary4

is an example implementation of a passive notary. It builds
its certificate database by passively monitoring traffic at
multiple independent Internet sites. The database can be
queried through a public DNS interface.

The scalability issues of Convergence are studied in [3].
Laribus [4] is an attempt to build a P2P notary service
exploiting social-connectivity graphs so as to remove the
need for centralized notaries. A longitudinal study on the
availability and functionality of publicly-available TLS
Notary Services is presented in [5].

C. Certificate validation in Google Android

The Google Android operating system supports inher-
ently the TLS protocol. Supported devices come with a
bundled trust store containing more than 150 certificates
of root certificate authorities. This list is initially popu-
lated by Google but may be further customized by third
parties, such as the manufacturer of the device and the
cellular network operators [6]. The size of the list steadily
increases over the years, raising the concern of the research
community regarding the trust model of Internet-deployed
TLS [7]. elopers, developers, developers! Android de-
velopers can integrate TLS functionality and certificate
validation in their apps for secure communication with
servers. This functionality is offered through an API of
the operating system. There are currently three alternatives
for realizing this:

• TLS and certificate handling by the operating system
(default handling).

• Custom validation by the application developer.
• Utilization of the “Network Security Configuration”

functionality in the forthcoming version of the An-
droid version system (Android N).

2http://www.perspectives-project.org/
3http://www.convergence.io/
4http://notary.icsi.berkeley.edu/



1) Default handling: The default certificate handling is
done automatically by the operating system and frees the
developer from all housekeeping operations. At the same
time, it provides the least of the control on how exactly
the validation is performed. The developer must procure
and install a server certificate signed by one of the (many)
trusted CAs that come with the operating system and take
appropriate action in case the certificate is expired or the
root CA is removed, e.g., due to a root CA compromise.
The latter is an unusual event but yet one that has indeed
occurred in the past5.

Certificate pinning is currently not supported in this
mode. Thus, the security-cautious developers must im-
plement by themselves custom validation to realize this
helpful functionality of certificate handling.

2) Custom validation: A second option for the devel-
opers is to handle the certificate validation by themselves.
This offers the greatest flexibility and allows support for
self-signed certificates as well. At the same time, the
application developer is solely responsible for the flawless
implementation of the admittedly complex procedure of
chained certificate validation. Until now, custom valida-
tion is the only means to implement certificate pinning
functionality.

3) Android N: Android N is the codename for the up-
coming release of the Android operating system (probably
version 7.0), announced in March 2016. In Android N,
apps can customize the behavior of their secure (HTTPS,
TLS) connections safely, without any code modification,
by using the declarative Network Security Config6 instead
of using the conventional error-prone programmatic APIs
(e.g., X509TrustManager).

Android N will be the first version supporting
certificate pinning at the application level as a
means to defend against MitM attacks7. The
pinning information will be bundled within the
network_security_config.xml resource file
of each application.

D. Issues with certificate pinning

Earlier research findings suggest that the developers
cannot cope sufficiently with certificate validation in gen-
eral and certificate pinning in particular. A study per-
formed in 2012 revealed that more than 1,000 applications
out of a sample of 13,500 included a completely wrong
implementation of the validation procedures [8]. A year-
long study between 2013 and 2014 revealed that the
situation actually does not improve but rather it is getting
worse over the time [9].

Interviews with developers of applications with broken
validation indicate that the developers are not fully aware
of the security implications of such erroneous implemen-
tations [10]. Quite often, the developers do not consider

5https://en.wikipedia.org/wiki/DigiNotar#Issuance of fraudulent
certificates

6https://developer.android.com/preview/api-overview.html#network
security config

7https://developer.android.com/preview/features/security-config.html#
CertificatePinning

MitM attacks as a threat altogether. Rather, their aim is
solely to implement self-signed certificates because it is
more convenient to them, despite the wide availability of
free server certificates.

“Pin It!” is a novel approach to offer certificate pinning
functionality transparently to the applications [9]. This is
achieved by intercepting system calls related to certificate
handling and enforcing the pinning with the assistance of
the user. If a new certificate is detected, the user is asked
to confirm the new certificate hash for future reference.
This approach assumes that the first connection with the
(web) server is not tampered (the so-called “trusted-on-
first-use” or “TOFU” principle) and that the user can
make informed decisions about the presented certificates.
User surveys suggest that the latter is a strong assumption
as the users fail en masse even in the simpler task to
judge whether their browser session is protected by TLS
or not [10]. It should be noted however that the “Pin
It!” approach is the only feasible one at the moment and
does not require an application update by the developer. It
offers adequate protection for the security-conscious users
against a careless developer who implements incorrectly
certificate validation and exposes the private data of the
users.

The Android N approach, when it will become avail-
able, is a step towards the right direction as it simplifies
the integration of certification pinning. It is less invasive
in nature and does not require a rooted device, since
the Network Security Config is an integral art of the
forthcoming operating system. Still, it requires the prompt
action of the developer, in order to take advantage of the
new functionality.

It remains to be seen if this approach will gain popu-
larity among the developers. Also, if it will be possible
for all Android devices to upgrade to the new operating
system and how fast; if not and in the meantime, the
developers will have to opt for a dual implementation
of their application: one that supports certificate pinning
through Android N and one through other means (or,
even worse, not at all, creating an illusion of security and
confusion to the users regarding the offered security level).

We also note that in the case of Android N, certificate
pinning will occur on a per-application basis. This will be
realized using a bundled resource file. Hence, if the pin-
ning information must be updated (e.g., due to a security
incident), the developers must go through the whole, time-
consuming process of delivering an application update to
their users, introducing further delays and extending the
window of exposure to MitM attacks.

III. DESIGN AND SYSTEM ARCHITECTURE

In this Section, we describe the design and the architec-
ture of an enhanced system supporting certificate pinning
for Google Android mobile applications.

Our design aims to address the shortcomings of the
approaches mentioned in Section II. More specifically,
we aim to offer: (i) increased security, by relying on
the collective knowledge of TLS notaries; (ii) transparent



Figure 2. Notary-assisted Pinning in Android Architecture

protection for all installed applications; and (iii) increased
usability, by reducing the user burden and involvement in
the bare minimum.

A. Threat model

We assume a threat model where an attacker is able
to launch MitM attacks on the connection between an
application installed on a Google Android device and its
respective web server. The attacker can intercept the TLS
connection phase and inject a fraudulent certificate to-
wards establishing a fake connection. Further, we assume
that the attacker is located closely to its victim (network-
wise), e.g., in a fake wireless access point but they cannot
intercept communications in other parts of the Internet
(e.g., between the web server and the TLS notary service
nodes).

B. System design

The design of our system follows closely the system
architecture of Google Android. The latter comprises four
layers, as depicted in Figure 2. Following a bottom-up
approach, the first layer is the Linux Kernel, containing all
the necessary drivers that power all of the functionalities
presented by the Android applications. The next layer con-
tains the essential Libraries and the Android Runtime. The
latter consists of the Core Libraries and the Dalvik Virtual
Machine (DVM). Every Android application executes in
its own DVM. The Application Framework layer provides
functionalities such as views, activity manager, window
manager, telephony, and location services.

Our design introduces a “Notary-assisted Pinning” com-
ponent in the Android Runtime layer. The component can
interface directly with the low-level functionality offered
by the Linux kernel, without application intervention.
Furthermore, at this level, it can hook and protect transpar-
ently all installed applications, without requiring special
application logic implemented in the latter.

C. Component functionality

When an application initiates a TLS connection, the
related Android library call is intercepted and the control

Figure 3. Certificate Validation Workflow

is passed to the component. The component workflow is
depicted in Figure 3.

The component will first check if the presented certifi-
cate refers to an already pinned web server certificate. If
yes, then the certificate hash is compared with the pinned
one. In case a match is found, the connection is allowed
and the control passes back to the calling application.
In case a match is not found, the component initiates a
transaction with one or more TLS notaries and checks if
the hash is known to them. Once a positive conclusion
is made, the control passes back to the calling applica-
tion. If a negative conclusion is made, the connection
is terminated and the control passes back to the calling
application. If a conclusion cannot be reached (e.g., the
notaries are not accessible or there is no consensus in
their replies), the component can either (i) terminate the
attempted and possibly untrusted connection or (ii) as a
last resort, generate a warning message and ask for action
confirmation by the user.

If an entry for the specific web server is not already
present in the pinning database, i.e., the web site was not
visited until now, then the component will again resort
to the collective knowledge of the notaries. If a positive
decision can be made, the pinning database is updated
accordingly.



IV. EVALUATION

The evaluation of our design is based on three dimen-
sions, namely functionality, security, and usability. We
analyze each of them in the next paragraphs.

A. Functionality

The proposed design does not require modifications to
the functionality of the installed applications or some addi-
tional effort for the developers, as it operates transparently
at a lower layer of abstraction (namely, Android Run-
time). Furthermore, the system interactions involve only
actions that are common to TLS processing and certificate
validation (e.g., cryptographic computations and network
exchanges). Some response latency can be expected and
considered acceptable, as it is similar to periodically
consulting a CA using OCSP.

Our design does not interfere with the recently-
announced Android N certificate pinning functionality, as
the latter is implemented in the application layer. Thus,
we consider that our design will actually enhance the
provided functionality and also provide an additional layer
of defense, in the meantime of distributing a new version
of the application through the app stores. Finally, the
proposed design neither depends on a specific Android
device model nor a specific application.

B. Security

We argue that our proposed design offers increased
security for the device owners. We are among the first
to offer certificate pinning functionality for all Android
applications. This provides a first layer of defense against
MitM attacks that present a different albeit valid certificate
for a known web server. Even if such a certificate is
presented, our design relies on the collective knowledge
of trusted TLS notary services for evaluating the new
information. This is a significant improvement over the
“Pin It!” alternative, which relies on the user comprehend-
ing the TLS warning messages and making an informed
decision [9].

The utilization of TLS notaries provides an additional
layer of defense against TOFU-based attacks. While it
might be the first time for a device to be presented
with a specific certificate, it is highly improbable that
the notaries have not seen it already. Hence, the local
lack of knowledge is accommodated through the collective
knowledge of the notaries.

We expect that the developers themselves are among the
first to install their application, once it becomes available
in the app stores. Hence, they will feed the notaries with
trusted information at a very early stage, even before the
general availability of the application. This can happen, for
example, during the period that they bring online their web
server and perform the necessary pre-deployment quality
assurance tests.

TLS Notary Services operate under the multi-path prob-
ing principle [5]. Hence, for launching a successful attack,
one must be able to interfere with all paths to the notaries
and inject fake certificates in their databases. This attack is

outside the threat model that is described in Section III-A.
Yet, we note that even if this attack is successful in first
place, the window of opportunity for an attacker would
be rather small, as we expect that the notary operators
will sooner than later detect the poisoning and remove the
fraudulent certificates.

The above analysis leaves one path for an adversary
to exploit. This is the communication path between the
Android device and the notaries. At this stage, the adver-
sary must present an unseen certificate to the device, so
as to force the communication with the notaries. If the
device cannot communicate with the notaries, then our
component will (preferably) drop the TLS connection as
well. We consider this as a better alternative to issuing
a warning to the user for further action but still it is a
configurable option. If the connection is dropped, then no
information will be transmitted and leaked to the intercept-
ing web server that is under the control of the adversary.
Hence, the security is maintained. It should be noted that
this behavior leads to a denial-of-service (DoS) attack.
Protection against DoS attacks is outside the scope of our
design and of certificate pinning in general; the aim is to
secure the transmitted information from eavesdroppers. In
this case, some other countermeasures should be employed
(e.g., switching to an alternative network, for example
a cellular connection, or delaying transmission until the
device moves away the network reach of the adversary).

An adversary could also try to impersonate as a notary
or alter the responses of the legitimate notaries, instead of
denying the connection to the notaries altogether. By and
large, this depends on the implementation of the notary
query interface. If a secure connection is realized for this
(e.g., over TLS), then the adversary will not be able to
intercept or impersonate the notary. This leads to a TOFU-
based attack scenario again. However, the certificates of
the notaries can be embedded in our component and thus,
defend against this threat. We expect that the notaries
will be well-defended, using state-of-the-art technology.
Thus, we consider as minimal, if existent at all, the risk of
revocing their certificates due to a security incident. Even
in that unfortunate case, it will take just an application
update to restore the correct functionality. Furthermore,
since the notaries do not operate on a per-application
basis, this would not be a targeted attack against a specific
application, device, or user but rather a generalized attack
against the notary infrastructure itself.

If a clear text connection is realized for the communica-
tion with the notaries (e.g., the DNS-based query interface
of ICSI Certificate Notary), then there is always the
possibility for an adversary to manipulate the responses.
Hence, it is necessary to realize an underlying secure
channel, so as at least be able to detect fake responses
(e.g., require that all responses are signed with a trusted
key).

C. Usability

We consider that our design improves the usability
of certificate pinning for the device user, on top of the



increased security. The “Pin It!” approach involves the
device user in the trust decision for each and every
certificate that does not match the stored one and for each
and every newly-visited web site, where no information
could have been stored already. This is far from optimal,
especially if this involvement results in breaking their
mental model for their primary task at hand, so as to cope
with a secondary one [11].

Our approach avoids the involvement of the user as
much as possible and relies on the collective knowledge
of the TLS notaries instead. As depicted in Figure 3,
the design relies on user involvement as an optional step
(bottom right). This happens only when the certificate hash
presented by the visited web site does not match (i) the
already-pinned one and (ii) the one that notaries are aware
of or (iii) have not ever seen a certificate for this web site.
Even in this very rare case, it is a configurable option
either to deny the connection automatically (preferable)
or ask the user to confirm and continue their visit at their
own risk.

It should be also noted that our approach works au-
tomatically for all installed applications, without user
intervention or action, further reducing the burden for
dealing with secondary security tasks. At the same time,
the user is relieved from the risk of accepting a forged
certificate and the certificate pinning functionality is per-
formed automatically for them.

V. PROOF-OF-CONCEPT IMPLEMENTATION

We implemented an Android component as a proof-
of-concept (PoC) of our design to study its behavior
in a realistic environment. There are many frameworks
available that allow the on-device dynamic instrumentation
and ease the development [12]. These frameworks allow
to target, intercept, and modify specific library calls.

We opted for the Cydia Substrate framework8, based
on the analysis of [12]. Cydia Substrate is a dynamic in-
strumentation framework that enables interception and/or
modification of system and application calls. Just by itself,
Substrate does not provide any specific functionality. It
acts as a platform (base) for developing particular mod-
ules, known as “extensions”. The framework itself modi-
fies the core of the Android system by injecting specific
jar files. This gives the opportunity for the developers to
intercept and manipulate the application and system calls.
This is the only reason for its essential requirement which
is the root privilege. Non-rooted devices keep this part
of the system protected from performing any changes.
Currently, the Google Android security model does not
allow modification of the Android Runtime, hence, our
component must be developed for a rooted device.

We base our PoC on the codebase of “Pin It!” that is
readily available as open-source software9 and realizes the
basic certificate functionality already [9]. We enhanced
the implementation to include the application logic to
assist the certificate pinning decision based on information

8http://www.cydiasubstrate.com/
9https://github.com/dbuhov/pinningTrustManager

Figure 4. Notary-assisted certificate pinning

Figure 5. User notification from inside the PoC implementation

provided by notaries, as depicted in Figure 4. For the
PoC, we integrate the query interface provided by the ICSI
Certificate Notary service, which is publicly-available. The
ICSI Certificate Notary service is consulted on the first
encounter of a certificate and in case a certificate change
is detected for an already pinned certificate. In all other
cases, the received certificates are checked against the
pinned ones, as previously. If a mismatch is detected, the
connection is terminated and an appropriate notification is
issued for the user (cf. Figure 5).

We experimented with our PoC implementation using
valid and expired certificates. We did not notice any
application problems (e.g., crashes or freezes) or no-
ticeable delays. The query interface of the ICSI Notary
Service was quite stable and the latency introduced by
the additional DNS query was indistinguishable from
normal network operations and the heavy cryptographic
operations involved in the TLS connection setup. We note



the communication with the notary is very sporadic in
nature anyway: only on first encounter and when the
certificate changes. Empirical evidence from a recent study
on TLS notaries suggests that certificate changes occur
every few months at the most frequent [5]. Overall, the
PoC implementation confirms that our design is sound and
feasible to implement in the Google Android environment.

VI. DISCUSSION AND CONCLUSIONS

We presented a design and system architecture for
notary-assisted certificate pinning in Google Android de-
vices. While per-application certificate pinning will be
introduced in the next version of the operating system,
there is still a need for a user-centric protection against
MitM attacks on all TLS connections, irrespective of the
application readiness and the developer’s capabilities to
defend against such attacks. Furthermore, notary-assisted
certificate pinning can be a layer of defense in the mean-
time that an application is exposed due to a certificate
change and the inherent delay to update through the app
store procedure.

The PoC implementation of our design confirmed that
there is no noticeable performance penalty in those cases
that a notary service must be consulted; yet the security
improvement is very significant. A larger-scale validation
is deemed necessary, possibly using the available dataset
of [9], in order to study scalability issues. A production-
ready implementation is envisioned for the future. For this
implementation, a coordination with the notary operators
is necessary, so as to implement a secure communication
interface. Towards this direction, it would be helpful to
see system vendors integrate such functionality in the op-
erating system itself and thus, make the solution available
for all Android devices and not only rooted ones.

Overall, our proposal for a notary-assisted TLS certifi-
cate pinning increases both the security and the usability
of mobile devices, while reducing the burden of the users
being involved in system security and trust decisions.

ACKNOWLEDGMENT

This work has been carried out within the scope of
the Josef Ressel Center for User-Friendly Secure Mobile
Environments (u’smile), funded by the Christian Doppler
Gesellschaft (CDG), A1 Telekom Austria AG, Drei-
Banken-EDV GmbH, LG Nexera Business Solutions AG,
NXP Semiconductors Austria GmbH, and Österreichische
Staatsdruckerei GmbH. Additionaly, the research was sup-
ported by the Austrian Research Promotion Agency (FFG)
through the COMET K1 program.

REFERENCES

[1] A. Dabrowski, G. Merzdovnik, N. Kommenda, and
E. Weippl, “Browser history stealing with captive Wi-Fi
portals,” in Proceedings of Workshops at IEEE Security &
Privacy 2016, Mobile Security Technologies (MoST), 2016.

[2] T. Dierks and E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.3,” Internet Engineering Task
Force, Internet-Draft, 2014, work in Progress.

[3] A. Bates, J. Pletcher, T. Nichols, B. Hollembaek, and K. R.
Butler, “Forced Perspectives: Evaluating an SSL trust en-
hancement at scale,” in Proceedings of the 2014 Conference
on Internet Measurement Conference (IMC 2014). ACM,
2014, pp. 503–510.

[4] K.-P. Fuchs, D. Herrmann, A. Micheloni, and H. Federrath,
“Laribus: privacy-preserving detection of fake SSL certifi-
cates with a social P2P notary network,” EURASIP Journal
on Information Security, vol. 2015, no. 1, pp. 1–17, 2015.

[5] G. Merzdovnik, K. Falb, M. Schmiedecker, A. Voyiatzis,
and E. Weippl, “Whom you gonna trust? a longitudinal
study on TLS notary services,” in Data and Applications
Security and Privacy XXX - 30th Annual IFIP WG 11.3
Conference (DBSec 2016). Springer, 2016.

[6] N. Vallina-Rodriguez, J. Amann, C. Kreibich, N. Weaver,
and V. Paxson, “A tangled mass: The Android root certifi-
cate stores,” in Proceedings of the 10th ACM International
on Conference on Emerging Networking Experiments and
Technologies. ACM, 2014, pp. 141–148.

[7] T. Fadai, S. Schrittwieser, P. Kieseberg, and
M. Schmiedecker, “Trust Me, I am a Root CA! Analyzing
SSL Root CAs in Modern Browsers and Operating
Systems,” in Proceedings of the 2015 10th International
Conference on Availability, Reliability and Security (ARES
2015). IEEE Computer Society, 2015, pp. 174–179.

[8] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner,
B. Freisleben, and M. Smith, “Why Eve and Mallory love
Android: An analysis of Android SSL (in)security,” in
Proceedings of the 2012 ACM conference on Computer
and Communications security (CCS ’12). ACM, 2012,
pp. 50–61.

[9] D. Buhov, M. Huber, G. Merzdovnik, and E. Weippl,
“Pin It! Improving Android network security at runtime,”
in Proceedings of the 15th IFIP Networking Conference,
Networking 2016. IEEE, 2016.

[10] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith,
“Rethinking SSL development in an appified world,” in
Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security (ACM CCS). ACM,
2013, pp. 49–60.

[11] C. Fidas, A. Voyiatzis, and N. Avouris, “When security
meets usability: A user-centric approach on a crossroads
priority problem,” in 14th Panhellenic Conference on In-
formatics (PCI 2010). IEEE, 2010, pp. 112–117.

[12] D. Buhov, M. Huber, G. Merzdovnik, E. Weippl, and
V. Dimitrova, “Network security challenges in Android
applications,” in Proceedings of the 2015 10th International
Conference on Availability, Reliability and Security (ARES
2015). IEEE Computer Society, 2015, pp. 327–332.


