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Abstract

Smartphones are our every day companions. We use them to communicate, perform
payments, track activities, or perform work-related tasks. With 2.5 billion Android
devices in circulation, it’s not surprising that there also exists a substantial second hand
market for smartphones. For example, in 2017 18% of people opted to sell their old
device.

The fact that private or company data resides on smartphones is a potential risk to
privacy or confidentiality when selling or discarding an old phone. Because phyisical
destruction is not an option if the phone is to be sold, the only viable alternative is
logical sanitization. For this purpose, Android provides the factory reset functionality,
which is supposed to delete all personal data.

In this paper we take a look at the factory reset implementation of Android from versions
5 to 9. We look at how the flash memory is wiped and which concrete operations
are performed. We identify major changes between the versions and document them.
Additionally, we look at the factory reset implementations of three popular alternatives
whose factory reset implementation is based on Androids, namely LineageOS, OxygenOS
and KaiOS.

We found no apparent issues in Android versions 5 to 8. We found that in An-
droid 9 a change to the factory reset implementation causes the use of the non-secure
ioctl(BLKDISCARD) instead of it’s secure counterpart BLKSECDISCARD. We also
identified some minor issues in the other operating systems.
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CHAPTER 1
Introduction

This chapter contains the motivation and problem statement. We talk about current
smartphone usage habits and about the second-hand smartphone market, which leads
to the problem statement of securely wiping a phone. Finally, this chapter contains
contributions and the structure of this work.

1.1 Motivation
Smartphone capabilities grew a lot; from the first phone that included a full-fledged
browser in 2007 to personal assistants that manage appointments and make reservations
in 2020. These new capabilities changed the way people utilize phones. Phones allow
us to check our emails, make financial transactions, keep track of our diet or manage
our commute. In addition to personal information they may also contain company data:
based on a survey from 2018 around 45% of people in the UK use their smartphones for
accessing work mail and about 30% for keeping track of appointments [1].

The fact that private and/or company data resides on smartphones can be a potential
risk to privacy or confidentiality, for example when one wants to sell their phone. In 2017,
about 18% of people who replaced their device opted to resell their old one, while around
35% kept it as a spare [2]. A survey from 2017 suggests that people replace their phones
on average after 21 months [3]. Even if a phone is not re-used, the improper disposal still
comes with security implications. To avoid that others gain access to private information,
it is paramount to securely wipe the memory of the phone.

Nowadays, Android is the most used mobile OS with 2.5 billion devices as of 2019 [4].
With the success of Android, multiple open source OSes based on Android emerged.
One example is LineageOS1, a fork of the Android Open Source Project (AOSP) which
supports 150 different devices and has over 1.7 million active installations [5].

1https://lineageos.org/

1

https://lineageos.org/


1. Introduction

Android provides the factory reset feature, which claims to delete all user data from the
device [6].

Factory reset is also the recommendation of NIST SP 800-88 Guidelines for Media
Sanitization [7] to dispose data of an Android device with the caveat that the OEM
correctly implemented the storage drivers and the storage provides a secure erase function.

Previous works analysed factory reset for Android 2.3 to 4.3. To our knowledge, no
studies about the effectiveness of factory resets for newer versions of Android exist.

1.2 Problem Statement
As discussed in Section 1.1, a phone generally contains sensitive data, be it phone numbers,
private photos or company data.

The different stakeholders want to keep this data confidential. Relatives and friends
don’t want their phone numbers leaked, employers want to protect information about
new projects and the user wants to keep their medical records private.

This presents the challenge of securely deleting the data when selling or disposing the
phone. One way to ensure that the data is not recoverable is to physically destroy
the device. This option, although the most secure when done the right way, is mainly
suitable for companies which can afford a sanitization device such as a shredder. Physical
destruction also does not apply when the phone is to be sold or reused inside the company.
A more feasible alternative, especially for individuals, is logical sanitization of the device.

This cannot be done manually by the user, because deleting a file via an file explorer
most often just deletes the reference to that file, but actually keeps the contents on the
flash memory. Additionally, deleting every file manually would be very time consuming
and could lead to errors, e.g. users missing certain directories. A better solution is to use
the factory reset functionality provided by Android, which clears the userdata and cache
partitions by performing a secure delete operation based on the underlying file system /
flash storage. This ensures that the data is really deleted from the storage. For details
about flash memory and secure deletion see Section 3.2.

Earlier versions of Android had issues with Factory Resets, which made it possible to
recover private data, see Chapter 2. Therefore, it is paramount that the factory reset
operation works correctly.

1.3 Contribution and Methodology
In this work, we will take a look at the implementation details of the factory reset
mechanisms to find out if these issues still persist in Android 5 to 9. Additionally, we look
at three other mobile operating systems, namely LineageOS 2 and OxygenOS 3, both of

2https://lineageos.org/
3https://github.com/OnePlusOSS
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1.4. Structure of this Work

which are forks of Android, and KaiOS 4, which is based on the Boot to Gecko operating
system. We examine how these systems implement factory reset, if the implementations
differ from the Android Open Source Project and if they carried over old flaws of the
Android implementation.

To achieve this, we will examine the source code of Android and the other operating
systems, compare the relevant code and document relevant differences.

1.4 Structure of this Work
Chapter 1 introduces the topic to the reader. Chapter 2 gives an overview of the existing
work covering factory reset and other closely related works. The necessary background for
the remaining chapters is presented in Chapter 3. Chapter 4 discusses the implementation
details of the factory reset functionality across the different versions of the respective
operating systems. Chapter 5 presents the results of the analysis from Chapter 3. Finally,
Chapter 6 summarises the findings and concludes the work.

4https://www.kaiostech.com/
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CHAPTER 2
Related Work

In chapter 2 we briefly touch upon related topics. In particular, we provide existing
works about the Android factory reset, secure deletion of storage media in general, and
forensic data recovery for flash memory and Android devices.

2.1 Factory Reset

There already exists work on the security of built-in methods for resetting mobile devices
to it’s factory state.

Schwamm et al. [8] performed an empirical study on factory resets for Android, iOS and
Blackberry devices. They compared pre- and post-reset artefacts and were able to recover
data on both devices. They did not identify why the data was not properly sanitized.

A more thorough analysis of the factory reset functionality of Android 2.3 to 4.3 was
performed by Simon et al. [9]. They were able to recover data across all versions and
identified two causes, the use of the ioctl BLKDISCARD syscall and missing driver
support for secure sanitisation methods of the flash memory chip.

Shu et al. [10] looked data deletion of Android, including the recovery system, and
possible flaws leading to residual data. They also discovered flaws in the factory reset
method of third-party or custom recovery systems.

Because modern mobile devices exclusively use flash memory as persistent storage media,
this topic is closely related to secure deletion methods for flash memory.

2.2 Secure Deletion

Secure deletion of storage media is a widely researched topic [11],[12],[13].
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2. Related Work

Based on the type of storage medium, e.g. magnetic or optical storage, different methods
have to be used to securely remove the data [7], [12].

For flash storage, this proves to be especially hard due to the fact that data cannot be
updated in-place due to the discrepancy in granularity between the program and erase
operations, see chapter 3.2.

To overcome this problem, a range of secure deletion methods were proposed.

One possibility is to use cryptographic erasure [7], i.e. encrypting the data and erasing the
encryption key. This method was initially proposed by Boneh et al. [14] to simultaneously
delete files from the file system and accompanying backups.

Lee et al. [15] developed a flash file system based on YAFFS21 that supports secure
deletion using cryptographic erasure.

A user space file system for Android that provides secure deletion was proposed and
implemented by Yang et al. [16]. They ensure deletion of the encryption keys by completely
filling the storage medium and therefore force garbage collection of unmapped blocks.

Another possibility is to provide an operation in the flash translation layer that securely
deletes data.

An evaluation of garbage collection times of deleted blocks and differences in response
time between compulsory garbage collection after each delete and normal operation was
performed by Kwak et al. [17].

To overcome the disadvantages of the naive way of secure deletion in the FTL, Wei et al.
proposed an operation they call scrubbing, that is reprogramming an already programmed
page and setting all bits, effectively erasing the data [18].

Jia et al. introduced a technique they call NAND flash partial scrubbing, which improves
on the method proposed by Wei et al. [18] by also being undetectable by an adversary [19].

In the case of mobile devices, secure deletion, together with encryption, is an important
piece in keeping mobile phone data confidential by preventing the recovery of data of
stolen or second-hand phones.

2.3 Forensic Methods

In the case of flaws in the factory reset functionality some or all user data that should
have been deleted could be left on the flash chip. This section lists research about mobile
data acquisition methods that could be used to retrieve that data.

For mobile devices, there are different types of acquisition methods. They are generally
categorized into logical and physical acquisition [20],[21],[22].

1https://yaffs.net
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2.3. Forensic Methods

The most common physical acquisition methods are JTAG, ISP and chip-off. Physical
acquisition methods are typically invasive, more difficult to perform and require specialised
hardware, but have the benefits of bypassing screen-locks and of obtaining a physical
image of the chip.

Logical or software based acquisition methods include among others the Android Debug
Bridge (adb) or commercial forensics software that utilizes a combination of different
methods, for example using root exploits to extract data.

Surveys of different acquisition methods were performed by Scrivens et al. [20] and Sathe
et al. [22].

Yang et al. reverse engineered firmware update protocols for some Android devices and
used remnant read commands to acquire an image of the flash memory [23].

Hasan et al. use a chip-off method to recover data after it was deleted via scrubbing [24].
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CHAPTER 3
Background

In this chapter we provide the background needed to understand the discussion in chapter
4. We given an overview of the Android OS and talk about the recovery image, the boot
process and security mechanisms of Android. Then we briefly discuss current standards
of flash storage and their capabilities.

3.1 Android

Android is an open source operating system by Google which was revealed in 2007. It is
based on the long time support (LTS) release of the Linux kernel with some Android-
specific changes from the AOSP and from OEMs. These changes are primarily to
improve power consumption, to support mobile hardware or other file systems or improve
security [25].

On top of the kernel sits the Hardware Abstraction Layer (HAL). The HAL is a set of
interfaces which are implemented by the OEM or SoC manufacturer and provide access
to the device-specific hardware to the higher layers of the Android system. This allows
the Android framework to be independent from the underlying hardware and has the
advantage that system updates do not require the vendors to rebuild the HAL.

From Android 7.1 onward, Android supports seamless updates using an A/B-partition
scheme. Up to and including Android 10, seamless updates are optional, meaning device
manufacturer could choose if the device is an A/B device or not.

A/B devices have two slots, namely slot A and slot B, of the partitions boot, vendor,
radio and system. When an update is available, it is applied to the inactive partitions,
e.g. slot B. When the update is finished, the device is rebooted from slot B and the slot
A partitions are marked as inactive. To support A/B updates, devices require a different
partitioning scheme than non-A/B devices. In the following, we give an overview of the
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3. Background

partitions in Android and highlight changes between different versions and between A/B
and non-A/B devices [26].

• boot contains the linux kernel image. Non-A/B devices with Android 8 or lower
also contain a ramdisk with a bootable rootfs. A/B devices instead contain a
recovery ramdisk which, in addition to the boot code, contains the code for the
recovery mode.

• system contains the Android framework and for A/B devices and Android ≥ 9
also a rootfs.

• user / userdata contains user-installed apps and customization data.

• cache stores temporary data for caching and is optional if a device implements
A/B updates.

• metadata is used to store metadata for device encryption.

• vendor hold vendor specific code and customisations. In older versions of Android,
OEMs typically applied their code and customisation directly to the Android source,
mixing vendor specific and generic code. With Android 8, all vendor specific code is
now separated from the Android source [27]. This enables Android updates without
the need for OEMs to modify their source code.

• recovery stores the recovery image, i.e. a linux kernel and the recovery mode.
This partition does not exist on A/B devices. For A/B devices, updates are applied
by the update_engine module of the currently unused system partition slot and
the recovery mode itself is located in a ramdisk in the boot partition.

• misc is used by the bootloader and recovery to communicate with eachother.
Contains the bootloader control block (BCB) [28].

• sdcard is the primary shared storage. It contains files received via file transfer or
media files.

These differences in the partitioning between the Android versions and A/B and non-A/B
devices mainly affect the concrete boot and update process. For example, Android 9
or later will directly mount the system partition as the root filesystem (at /) (which is
called system-as-root) and start the first stage init process from the system partition,
where previous versions would mount the ramdisk in the boot partition and start init
from there.

Android supports the ext4 and f2fs file systems for block-based storage, i.e. embedded
MultiMediaCard (eMMC) or Universal Flash Storage (UFS) and YAFFS2 for raw nand
storage [26]. Nowadays, devices typically use eMMC or the newer UFS storage. We will
further discuss flash storage in chapter 3.2

10



3.1. Android

For the factory reset functionality, relevant partitions are boot, data / userdata, cache,
metadata, recovery and misc.

3.1.1 Bootloader

The bootloader is responsible for loading either the kernel or the recovery image into
memory and starting it. Additionaly, the bootloader may implement Verified Boot.
Verified Boot was introduced with Android 4.4. It is a specification for verifying the
integrity and authenticity of the installed system. If an manufacturer decides to implement
Verified Boot, they sign the built version of Android on their devices and embed the
public part of the key in read-only storage. During boot, the bootloader then verifies
the signature on the partitions using this public key. With Android 8 a reference
implementation of Verified Boot called Android Verified Boot is provided, which adds
rollback protection. Rollback protection prevents flashing of older images over newer
ones by comparing their version.

A device can be locked or unlocked; the bootloader prevents booting of an unsigned OS
only if the device is in the locked state. With an unlocked device, it is possible to install
a custom recovery system or kernel or a modified version of Android. Unlocking is also
a popular method to gain root access to a device. This can be achieved by unlocking
the bootloader and flashing a custom boot image which enables apps to run with root
permissions, for example see [29]. Because unlocking a device disables the security model
of Android, some manufacturers disable the unlock functionality by setting the system
property oem_unlock_supported to false before building the system image.

The bootloader decides whether to load the recovery image or the kernel by reading the
command field in the bootloader control block (BCB) in the misc partition. This value
is written to by Android when, for example, the user initializes a factory reset from the
settings app.

3.1.2 Recovery

The purpose of the recovery mode is to apply over-the-air (OTA) updates and to allow
users to reset the device. Recovery consists of a kernel and the code for the recovery mode,
i.e. the recovery binary. The binary contains among other things a minimalistic GUI,
the code for the factory reset and update functionalities and code for communicating
with the bootloader.

For non-A/B devices, the recovery is self-sufficient, all the code is located in the recovery
partition. For A/B devices, the recovery mode (code/data) is in the recovery ramdisk in
the boot partition, but the kernel is reused from the inactive boot slot.

The recovery binary is controlled by arguments from three different sources. These are
in decreasing priority the command line, the bootloader control block (BCB), and the
file /cache/recovery/command. When the binary is started, it parses it’s arguments and
performs the appropriate action.
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3. Background

3.1.3 Security Mechanisms

Because we carry mobile devices with us most of the time, they are easy targets for theft.
For example, in the UK alone, in 2015 about 538.000 people were victims of mobile phone
theft [30].

To prevent personal data from being stolen, Android 4.4 introduced full-disk encryption
(FDE). Android 5 made it mandatory for devices to support FDE, but it was not required
by default. With Android 6, encryption has to be enabled by default for devices that
have an AES encryption performance above 50 MiB/s [31].

For FDE, a random 128-bit disk encryption key (DEK) is generated and encrypted using
the user credentials, i.e. the PIN, password or pattern or the string ’default_password’
and a hardware-bound key stored in the trusted execution environment (TEE) of the
device. The DEK is then used to encrypt the data partition.

FDE has the disadvantage that the phone cannot be used without the user entering their
credentials. To eliminate this disadvantage, file-based encryption (FBE) was released
with Android 7. In contrast to full-disk encryption, file-based encryption uses two keys,
a device encrypted (DE) and a credential encrypted (CE) key. Both keys are encrypted
using a key stored in the TEE, the CE key in addition is encrypted using the user
credentials. This allows apps to access storage encrypted with the DE key without the
need for the user to enter their credentials. The actual encryption of the user data is
done by assigning an encryption policy to each directory in the data partition. This
policy specifies if the directory is encrypted using the DE or CE key. In addition to the
actual files the filenames are also encrypted.

Up to Android 9, devices must support at least one encryption method and enable it by
default, with Google recommending file-based over full-disk encryption.

For a detailed description about encryption see [32].

Altough encryption guarantees the integrity of user data, which is good from a privacy
perspective, it certainly does not deter criminals from stealing phones. Before Android 5,
a stolen phone which was protected by a PIN or passphrase could still be used by booting
into the recovery mode via a certain keystroke combination and performing a factory
reset. This would clear the userdata, cache and metadata partitions and effectively return
the phone to it’s initial state after leaving the factory, hence the name factory reset.
This is not entirely true because the system partition is not reset, meaning updates will
remain.

To discourage theft, the factory reset protection (FRP) feature was introduced with
Android 5.1. FRP requires that the credentials of the previous owner of the device are
entered during the setup process if the devices was reset using the recovery mode. This
is done by using a separate partition, typically /dev/block/.../by-name/frp, which stores
the required data in a persistent data block (PDB). When a PDB is present during
the device setup process, the previous user’s credentials are checked. If the check fails,
the device will not boot. Legitimate users can wipe the PDB by initialising a factory
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3.2. Flash Storage

reset from the device settings UI or removing all Google accounts from the device. An
adversary cannot do that, even if they have access to the unlocked device, because both
actions require the credentials of the user.

Android protects apps and their data by using existing features of the Linux kernel
among others. Each application is run in a separate process and is assigned a unique
user ID, which prevents apps from accessing resources which they do not have permission
for. Since Android 5 SELinux is used to further limit the access to other processes and
files. Users and apps by default do not have root permissions in Android.

It is important that the bootloader is locked, see chapter 3.1.1. With an unlocked
bootloader, everyone with physical access to the device can overwrite the device partitions
with custom software and bypass all security mechanisms.

3.2 Flash Storage
Mobile devices use flash storage for their non-volatile memory. The two most common
types of flash storage design are NOR and NAND flash [33]. For the purpose of mass
storage NAND flash is generally used due to it’s much higher storage density and lower
cost [34, Chapter 6.1].

The information about flash memory in the following paragraph is based on [34].

NAND memory is structured in blocks, which consist of multiple pages which in turn
consist of cells. A cell can store one or more bits of information. Cells which can store
one bit are called single-level cells (SLC) and cells that can store more bits multi-level
cells (MLC). MLC memory has the advantage that it has a higher storage density than
SLC memory, but a shorter lifespan. The size of a page is typically in the range of a
kilobyte, e.g. 2 KB, whereas blocks typically are in the range of 32 or more pages. A
block additionally stores some metadata, i.e. the number of program / erase cycles,
the block state and/or an error correction code. Raw flash memory has the operations
erase, program/write and read. The program and read operations are performed on
a page, whereas an erase operation targets a whole block [34, Chapter 6.1]. NAND
memory does not allow random access, i.e. it is not possible to update already written
pages; pages have to be deleted before they can be programmed again. The cells of
memory degrade with each erase operation. The lifespan of the cells is typically measured
in write/erase cycles, that is the minimal number of write/erase operations which can
reliably be performed on each block, as guaranteed by the manufacturer. This typically
is in the range of 10.000 for MLC and 100.000 for SLC memory.

Because of these limitations of NAND flash, additonal memory management is needed.
When a file is written or updated, the memory pages cannot be updated in place. Instead
they have to be erased or copied before being written again. This decreases the write
performance due to additional erase and program operations and wears out some blocks
faster, which in turn decreases the lifetime of the NAND storage overall. This is especially
bad for mobile devices which have an embedded memory. This problem is typically solved

13



3. Background

by using either managed flash, which has a built-in controller with a flash translation
layer (FTL) [35], or by using a dedicated flash file system [36].

Both FTL and the flash file system perform the additional memory management operations
and offer in-place update functionality to the rest of the system. To ensure the maximal
lifetime of the flash, all blocks should be used evenly. FTLs typically implement a wear
leveling algorithm [37] which tries to achieve that.

Another technique to increase the overall lifetime is to over-provision the memory [38],
i.e. the flash contains a percentage more blocks than advertised and when a block is
marked as bad it is replaced by one of the extra blocks.

Early smartphones used to ship with unmanaged or raw NAND flash and therefore had
to use a flash file system, e.g. YAFFS2. Now, only managed flash is used for mobile
devices. The two main standards for managed flash are eMMC [39] and it’s successor
UFS [40].

Both eMMC and UFS memory have an integrated controller who manages the actual
low level access to the flash.

3.2.1 Secure Deletion

As discussed above, flash requires wear leveling which in case of managed NAND is
performed by the memory controller. When a delete operation is performed, the controller
may not actually delete the blocks but rather mark them as unused. This is not always
the desired behaviour, for example when we want to delete sensitive data or perform a
factory reset of an Android phone.

For this usecase, the eMMC standard specifies the sanitize or secure erase operations
respectively. The sanitize operation succeeds the secure erase operation with eMMC
version 4.51.

To securely delete data, the erase operation is executed first. Erase moves all given
blocks from the mapped to the unmapped address range. Then, the sanitize operation
has to be executed; this physically removes all data from the unmapped address space.
The concrete operation that is performed by sanitize depends on the Secure Removal
Type byte. Four different actions are supported [39]:

1. Erasing of the physical memory.

2. Overwriting the addressed locations with a character followed by an erase.

3. Overwriting the addressed locations with a character, its complement, then a
random character.

4. Using a vendor defined function.

14



3.2. Flash Storage

For example an eMMC 5.0 module from Toshiba supports method 1 and 4. It is important
to notice that the available erase operations depend on the vendor.

Linux provides access to the functions of the eMMC flash via the ioctl syscall. The
command for the block device driver is BLKSECDISCARD, but the flash can also be
securely erased by issuing a MMC_IOC_CMD ioctl with the appropriate parameters.

The difference between the two is that BLKSECDISCARD ioctl issues a secure trim or
secure erase operation, and with MMC_IOC_CMD it is possible to issue every supported
command, e.g. sanitize.

The eMMC secure erase and secure trim operations are supported in the Linux kernel
since August 2010 [41], and the sanitize operation since May 2013 [42].
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CHAPTER 4
Analysis

In this chapter we examine the implementations of the factory reset functionality in
Android, LineageOS, KaiOS and OxygenOS. We begin by taking a detailed look at the
factory reset code in Android, as it is the basis of the other implementations. After that,
we introduce the implementations of the other operating systems by comparing them to
Android.

4.1 Android Open Source Project
This section contains the analysis of the Android factory reset implementation. In short,
a factory reset first prepares the bootloader control block (BCB) and reboots the device
into the recovery system. There, the format_volume function reformats the volumes
/data, /cache and /metadata. Then the BCB is reset and the device again reboots into
the main system.

The following sections take a deep dive into the concrete implementations of each step.

4.1.1 Triggering a Factory Reset

In Android, there are three ways for the user to start a factory reset; directly from the
recovery system, from the settings app or via the remote administration functionality of
Android / Google.

Additionally, factory reset is also triggered every time the bootloader is unlocked, see
3.1.1.

When the user starts a factory reset via settings or the remote administration functionality,
an ACTION_FACTORY_RESET intent is broadcasted. This triggers the MasterClear-
Receiver.onReceive action which in turn calls RecoverySystem.rebootWipeUserData(..). re-
boootWipeUserData writes the arguments for recovery into the BCB. They are –wipe_data,

17



4. Analysis

–reason=MasterClearConfirm and –locale=default-locale. Then, the system is rebooted.
During the restart, the bootloader reads it’s arguments from the BCB and then boots
into recovery [43].

On the other hand, a factory reset can be triggered by selecting the corresponding option,
typically wipe data/factory reset, in the recovery system. This does not write to the
BCB or reboot the device but instead directly performs a factory reset. A device can be
booted into recovery mode by either using the Android Debug Bridge (adb) with the
reboot recovery command [44] or by pressing certain keys while the phone is starting, e.g.
power, volume up and home for Samsung devices.

4.1.2 Inside the Recovery System

The recovery system first parses it’s arguments from one of the following three sources in
decreasing priority; the actual command line, the bootloader control block (BCB) or the
contents of the recovery command file, usually /cache/recovery/command [45]. In the
case of a factory reset triggered by the user the commands are supplied via the BCB.
They are, as mentioned above, wipe_data, locale and reason. The value of reason and
locale is logged and locale is used to initiate the UI with the correct language. Then
follows a long if ... else if statement that performs different actions based on the supplied
arguments. In the case of wipe_data, the function wipe_data is called. This function
is the single entry point for a factory reset. All relevant operations regarding a factory
reset are performed by this function and it’s subroutines. It performs five major steps:
pre-wipe, wipe /data, wipe /cache, wipe /metadata, and post-wipe.

The pre- and post-wipe subroutines perform device-specific operations and are supplied
by the vendor. For example, the post-wipe routine in the Pixel 3 phones clears data from
the Titan M security module. The default implementation provided by Android does not
perform any actions.

In the case that the user directly booted into recovery, a menu is shown that allows the
user to select an action. If wipe data is selected, the wipe_data function is called directly.

4.1.3 Wiping volumes

The function that wipes the volumes is called erase_volume. It takes the volume path as
an argument. As mentioned above, it is called with the values /data and, if the volumes
exist, with /cache and /metadata. The function erase_volume first initializes the UI
background and displays a progress bar. If the volume to wipe is the cache volume, log
files which are stored there are temporarily loaded into memory and restored again after
the formatting is done. That is done to prevent deleting the logs of the current run of
recovery.

Then, the format_volume function is called. The function format_volume first initialises
a struct v of type fstab_rec using the volume path. The struct contains the data of the
entry for the volume in the recovery fstab file. Then some checks are performed, e.g. if
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the given path exists and is a valid volume, the given path is not the ramdisk, and the
volume is not mounted. Furthermore, factory reset is only supported for ext4 or f2fs
filesystems. If any of these checks fail, the factory reset will be terminated.

Next, the device encryption metadata is wiped, if it exists. The path to the encryption
metadata is read from one of the flags forcefdeorfbe, encryptable, or forceencrypt in the re-
covery.fstab file and stored in v->key_loc. The wiping is done using the wipe_block_device
function from the system/extras/ext4_utils module [46]. In wipe_block_device, it is first
checked if the device is really a block device. As mentioned in chapter 3, block devices
do not allow raw access to the disk but rather hide the hardware-specific details behind
an integrated memory controller, e.g. for managing wear leveling. Therefore, the wipe
instruction is only needed for block devices.

The secure deletion is done by issuing a BLKSECDISCARD operation via the ioctl
system call. The range of blocks that should be erased is given as an argument and is
always [0, n] with n being the total size of the device. In case the operation fails, e.g. the
underlying controller does not support the BLKSECDISCARD operation, the command
BLKDISCARD is used as a fallback mechanism. If that fails too, a warning message
is shown, or, since Android 10, the device is manually overwritten with zeroes. The
fallback mechanisms only performs logical sanitization of the blocks, i.e. the blocks are
only marked as deleted but the data is still present. This may allow recovery of the
underlying data as shown in e.g. [9], [18].

Recreating the file system

The next step is recreating the files system. For f2fs, this is done using mkfs.f2fs from
f2fs-tools [47]. By default, mkfs.f2fs trims the device before recreating the file system.
This is done by issuing the BLKSECDISCARD command to the device via the ioctl
syscall. If that fails, the BLKDISCARD command is used as a fallback mechanism. In
Android 8 and lower, the default trim operation is disabled via the -t option. From
Android 9 onwards, the -t option is no longer used and therefore the device is securely
wiped.

For ext4fs, there are two different code bases. Up to Android Oreo, the file system is
created by calling make_ext4fs_directory from the system/extras/ext4_utils module.
This in turn calls wipe_block_device to securely wipe the partition [46].

Since Android 9, the mke2fs binary from e2fsprogs is used to create the file system [48].
This change was introduced in revision ded2dac [49]. mke2fs also supports discarding the
device before file system creation, but it uses BLKDISCARD to do so [50]. As mentioned
above, BLKDISCARD does not guarantee that blocks are physically wiped and it may
allow recovery of the underlying data. We suspect this change is a bug due to the fact
that the wipe_block_device function in wipe.cpp is still maintained [46].
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4.1.4 Cleanup

After the file system creation the recovery system arguments, in this case the BCB, are
reset and the system is rebooted.

4.1.5 Summary

In summary, a factory reset first boots into the recovery system. The volumes /data,
/cache and /metadata are reformated using either the BLKSECDISCARD or BLKDIS-
CARD operation. If one of the volumes is encrypted, the associated encryption metadata
is always wiped using BLKSECDISCARD. Then, the file system is recreated, parameters
are cleaned up and the system is restarted. Because the /system partition is not cleared
during a factory reset, operating system updates are not reset.

Android versions from Lollipop to Oreo (5 to 8.1) use the ioctl(BLKSECDISCARD)
syscall to securely clear the user data.

From version Pie (9) and upwards, mke2fs is used to create the file system. Here,
ioctl(BLKDISCARD) is used to wipe the partition, which may allow recovery of the
data [9], [18].

4.1.6 System Call Handling

As stated above, Android uses the BLKSECDISCARD or BLKDISCARD ioctl system
call to wipe the flash memory when a factory reset is performed. These system calls are
handled by the kernel and the device driver. Therefore, the security of the wipe operation
depends on the concrete driver and product kernel of the device.

In 2017, Google wanted to unify the kernel landscape of Android devices by introducing
the Android Common Kernels (ACKs). ACKs are downstream of long term releases of
the Linux kernel and the base for all device kernels [51]. They contain Android specific
features, patches, and drivers and tools common to all Android devices. Google also
introduced a kernel version requirement; since Android 8 Oreo, new Android devices
have to launch with a kernel versions from a designated list [25]. Older devices may still
use older versions of the Linux kernel, even if they are upgraded to Android 8 or higher.

Next, we will look at how the BLKSECDISCARD iotcl operation is handled in the
kernel. We choose to examine ACKs 3.18, 4.4, 4.9. 4.14 and 4.19, because they contain
all designated release kernels for Android versions 8.0 to 10. In addition we examined
kernel 3.10, because it is used by KaiOS which we cover in chapter 4.4.

In all mentioned kernel versions, the ioctl syscall is handled by the generic block layer.
First, in /block/ioctl.c a switch statement over the ioctl operation decides which operation
to call. In the case of BLKSECDISCARD the function blkdev_issue_discard from
/block/blk-lib.c gets called. This function prepares the block request in form of a linked
list of bio structures, which is then handed to the specific device driver by calling
submit_bio. For more information about Linux drivers see [52] or [53].
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The request is then handled by the MultiMediaCard (MMC) driver code in /drivers/mmc/.
First, the range of blocks that should be erased is selected. This is done by issuing the
commands ERASE_GROUP_START and ERASE_GROUP_END with the start and
end addresses as 32 bit argument to the eMMC controller. As mentioned above, in case
of a factory reset this range spans the whole devices. Then the ERASE command with
argument 0x80000000 is issued, which corresponds to a secure erase as defined by the
eMMC standard [39].

For all Android Common Kernels we looked at, the MMC driver uses the above mentioned
requests.

Since eMMC 4.5, the recommended way to securely delete the data is the SANITIZE
operation [39]. SANITIZE has to be used after an ERASE or TRIM operation and
physically removes the data from the unmapped address space.

Support for the SANITIZE operation was added to the kernel in October 2011. It was
used in the mmc_blk_issue_secdiscard_rq function of the MMC driver, which handles
the BLKSECDISCARD operation. At first, the SANITIZE operation was called without
a prior ERASE or TRIM operation. This meant that the respective blocks were not
deleted at all, and only the unmapped address space was wiped. This bug was fixed in
April 2012 and applied in kernel version 3.2.

Interestingly, the use of the SANITIZE operation in the BLKSECDISCARD handler of
the MMC driver was reverted in April 2013 and instead moved to the MMC_IOC_CMD
ioctl syscall. The MMC_IOC_CMD operation is the pass-through command for MMC
devices, i.e. it allows sending of arbitrary commands to MMC devices. Since then, the
MMC driver again uses the ERASE or TRIM operation with the secure erase arguments.
The relevant commit message states that the SANITIZE operation was removed because
it’s purpose is to be invoked by a user and not by the file system or via a block device
request.

Altough the security of the wipe operation should not be affected by using either ERASE
and SANITIZE, or the secure variant of the ERASE command, the wipe operation in
Android should use the recommended way to securely remove the data from flash devices.
Using the deprecated functionality may introduce bugs or unexpected behaviour in some
device configurations.

4.2 LineageOS

LineageOS, formerly known as CyanogenMod, is a custom ROM based on Android. The
ROM is currently available for about 170 different devices [54].

The source code of LineageOS is forked from the AOSP project and then modified. The
ROM developers also maintain the device tree and device kernel with the drivers for
each specific hardware. Table 4.1 shows the version of LineageOS with the corresponding
AOSP version.
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For our analysis, only the recovery system, bootable/recovery, and the system/extras
module are of interest. We compared these modules with their upstream Android projects
by adding a second remote to the git project, e.g. https://android.googlesource.
com/platform/bootable/recovery for the recovery module, and using the Com-
pare with Branch feature of Android Studio.

Version 13, 14 and 14.1 include preprocessor directives which change the behaviour of
wipe_block_device based on the existence of macros.

If NO_SECURE_DISCARD is defined, only BLKDISCARD is used to sanitize the
device, if SUPPRESS_EMMC_WIPE is defined, sanitizing is skipped all together and
only a warning is displayed [55]. These macros are set based on the board-specific
configuration in BoardConfig.mk of the device during the build.

The versions 15, 15.1, 16, 17, and 17.1 of LineageOS are functionally identical to their
respective Android versions regarding the factory reset functionality. LineageOS 15
and 15.1 only have some minor adjustments in the code responsible for displaying GUI
elements, e.g. the progress bar. Some interesting changes introduced by LineageOS are
that from version 16 and upwards, it is possible to install unsigned updates by skipping
the verification step. Version 17 adds the option to wipe the system partition to the
recovery menu [56].

The kernels for concrete devices, e.g. for Xiaomi or OnePlus devices, are based on the
Android Common Kernel Project or on the Android for MSM Project kernels [57]. The
Android for MSM Project kernels are downstream of ACKs and include qualcomm chipset
support. Therefore, it is safe to assume that the LineageOS kernels handle the system
calls in the same way as the ACKs.

CM 13 refs/tags/android-6.0.1_r81
CM 14 refs/tags/android-7.0.0_r14
CM 14.1 refs/tags/android-7.1.2_r36
LineageOS 15 refs/tags/android-8.0.0_r30
LineageOS 15.1 refs/tags/android-8.1.0_r52
LineageOS 16 refs/tags/android-9.0.0_r46
LineageOS 17 refs/tags/android-10.0.0_r11
LineageOS 17.1 refs/tags/android-10.0.0_r41

Table 4.1: LineageOS versions with corresponding versions of Android

4.3 OxygenOS
OxygenOS is a custom ROM developed by OnePlus Technology for their One Plus
devices.

In 2016, the source code for OxygenOS was made public on Github [58]. Both the
kernel and the Android source are based on the Android for MSM project. These
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repos are downstream of AOSP and Android Common Kernels respectively and contain
enhancements for Qualcomm Snapdragen SoC.

OnePlus publishes the source code in form of a repo manifest file. This file includes all
the repositories needed to build the specific android image.

For our analysis only the /system/extras module and the recovery system are of im-
portance. As with LineageOS, we performed the analysis by getting the manifest files
for different versions of OxygenOS [58]. We then cloned the /system/extras and the
/bootable/recovery repositories in the version specified in the manifest file. The compari-
son was done by using the Compare with Branch feature of Android Studio using the
corresponding upstream branch of AOSP. Table 4.2 shows the versions of OxygenOS
with their respective Android versions.

All versions of the OxygenOS recovery were identical to the AOSP implementation
regarding the factory reset functionality. The wipe_block_device function in sys-
tem/extras/ext4_utils/wipe.c was also identical for all versions.

OxygenOS 3.5 Android 6.0.1 (marshmallow-release)
OxygenOS 4.5 Android 7.1.2 (nougat-mr2-release)
OxygenOS 5.0 Android 8.0 (oreo-release)
OxygenOS 5.1 Android 8.1 (oreo-m8-release)
OxygenOS 9 Android 9 (pie-release)

Table 4.2: OxygenOS versions with corresponding versions of Android

4.4 KaiOS

KaiOS is an operating system for feature phones. It is a fork of Boot to Gecko (B2G) [59].
Gecko is the browser engine developed by Mozilla. In case of B2G and KaiOS, Gecko
acts as the application runtime, i.e. it is the counterpart to Android’s Android Runtime
(ART). Therefore, apps for KaiOS are written using web technologies, i.e. HTML, JS,
CSS.

To allow Gecko access to hardware functionality via web APIs, it is built with Gonk as a
porting target. Gonk is the name for the underlying operating system. It consists of an
AOSP Linux kernel, device libraries and drivers, and a hardware abstraction layer [60].

B2G is licensed under MPL1, therefore the parts of KaiOS that are based on B2G are also
made available on Github [61]. For the analysis we also looked at the publicly available
parts of the source code of the Nokia 8110 4G, which runs KaiOS [62]. Unfortunately,
the UI layer and the system apps are not open source. Therefore our analysis of KaiOS
only covers Gecko, Gonk, and the recovery image.

1Mozialla Public License https://www.mozilla.org/en-US/MPL/2.0/
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KaiOS generally provides three ways to reset the phone: via the settings app, from the
recovery system or via remote wiping provided by the KaiOS anti-theft service 2. The
available options for a specific model depend on the vendor.

KaiOS uses the stock AOSP recovery image. In the repo manifest file we see that
revision refs/tags/android-10.0.0_r1 from https://android.googlesource.com
is referenced. KaiOS does not state which version of the Linux kernel they use. The
kernel version used by the Nokia 8110 4G is 3.10.

To interact with the recovery system, the librecovery library is used. It provides the
functions to start a factory reset or an FOTA (firmware-over-the-air) update. This is
done by writing the desired command to the recovery command file accordingly and then
rebooting into the recovery system. For a factory reset the command –wipe_data is used.
For more information on interacting with the recovery system also see chapter 4.1.2.

The functionality of librecovery is exposed to Gecko via the RecoveryService.js module and
the js-ctypes library. js-ctypes is a wrapper for shared libraries that allows calling C/C++
functions from JavaScript code [63]. RecoveryService.js provides the factoryReset(reason)
method. Based on the argument, it writes different commands to the post reset command
file and then starts a factory reset. As is the case with Android, the factory reset wipes
the volumes /data and, if they exist, /cache and /metadata. If the value wipe is passed
to the factoryReset(..) method, potential SD card partitions are also cleared during the
first start up after the factory reset. This is done by adding all partitions in the post
reset command file and, after rebooting, recursively deleting all files and subdirectories
in the partitions. The files are deleted using the nsILocalFile interface. For Unix systems,
the implementation can be found in xpcom/io/nsLocalFileUnix.cpp. There we see that
unlink is used to delete a file. Therefore, there are no guarantees that the data on the
SD card was securely removed from the flash memory.

Because the recovery system used is identical to the AOSP recovery, all observations
from chapter 4.1 also apply to KaiOS. In particular the usage of e2fsprogs’ mke2fs to
recreate the file system is noteworthy. As discussed in chapter 4.1, mke2fs replaced
the functionality of the system/extras/ext4_utils module since Android 9. Therefore,
wipe_block_device and in turn the ioctl(BLKSECDISCARD) syscall are no longer used to
wipe the partitions. Instead, mke2fs wipes the partitions using the ioctl(BLKDISCARD)
syscall. This does not guarantee that the unmapped address space of the flash memory
is deleted.

2https://services.kaiostech.com/antitheft/#/login

24

https://android.googlesource.com
https://services.kaiostech.com/antitheft/#/login


CHAPTER 5
Results

Chapter 5 summarizes our findings from chapter 4. We discuss the issues affecting
Android and highlight notable changes introduced by the other operating systems.

5.1 Overview

The security of the factory reset of a phone depends on the fact that every single
component out of the flash device, the kernel as well as the operating system support
secure deletion.

As discussed in chapter 3.2, the standard for managed flash memory used in smartphones
is either eMMC or it’s successor UFS. The eMMC standard supports secure deletion
since version 4.5, i.e. since 2012, with the secure erase or secure trim, or the newer and
current sanitize command [39]. For UFS flash memory, secure removal is mandatory
since at least version UFS 2.0, i.e. since 2013 [64].

Secondly, the kernel has to support the eMMC or UFS standard as mentioned above.
Support for the eMMC secure erase operation is provided by the block device driver of
the kernel [41]. To trigger the secure erase, an ioctl(BLKSECDISCARD) system call
can be used. In May 2013 support for eMMC version 4.5 was added to the Linux kernel.
Since then, the ioct(MMC_IOC_CMD) system call can be used to issue the sanitize
command to a flash device [42].

Lastly, the OS has to use the correct system call to trigger a secure deletion operation.
In the case of a factory reset, the Android recovery image contains the code responsible
for securely wiping the device.
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5.2 Findings
As shown by Simon et al. [9], early versions of Android had problems with sanitisa-
tion during a factory reset. Even though Android 4.0 and onwards uses the secure
ioctl(BLKSECDISCARD) operation to sanitize the data partition, some devices they
analysed did not support the BLKSECDISCARD command. The suspected that vendors
did not include the necessary device drivers to support secure deletion. They also showed
that with increased versions, the devices with insecure deletions decreased.

With that said, from Android 5 to 8 there where no significant modifications in the
factory reset code, most importantly the ioctl(BLKSECDISCARD) is universally used
for sanitization.

In Android 9, with revision ded2dac [49], the mke2fs binary from the e2fsprogs module
replaces the call to the make_ext4fs_directory function from the system/extras/ext4_utils
module. With this change, the function wipe_block_device is no longer called during
a factory reset, see chapter 4.1.2. Although mke2fs supports wiping the device before
recreating the file system, it does so by issuing a ioctl(BLKDISCARD) operation. In
contrast to the ioctl(BLKSECDISCARD) operation, this does not correspond to a secure
deletion operation as defined by the eMMC [39] and UFS [40] standards.

The recovery system of LineageOS has only minor changes to the respective Android
version. Therefore, starting from LineageOS 16, which corresponds to Android 9, the
factory reset is also affected by the change to use mke2fs instead of make_ext4fs_directory
as described above.

In LineageOS 13, 14 and 14.1 the behaviour of wipe_block_device can be adjusted during
build. It is possible to skip the deletion of the flash device entirely or to downgrade to
the use of BLKDISCARD [55]. This was done to prevent some devices to be permanently
damaged due to bugs in the Samsung eMMC firmware. This was only relevant for older
devices, e.g. Samsung Galaxy S2, but the code was kept until LineageOS 14.1.

The recovery system used by OxygenOS is identical to the respective Android versions.
Therefore, from version 9, OxygenOS also suffers from the use of BLKDISCARD for
wiping the flash memory.

Although KaiOS is based on Boot to Gecko rather than Android, it uses the Android
recovery image to reset the device, see chapter 4.4. At the time of writing, the current
version of KaiOS is 3.0 and uses the recovery image version refs/tags/android-10.0.0_r1.
That means the observations for Android also apply and it may be possible to recover
data after a factory reset.

In addition, KaiOS supports wiping of the SD card partition using the unlink system
call, which does not have any security guarantees.
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CHAPTER 6
Conclusion

In this work, we examined the factory reset mechanism of Android from version 5 to 9
and compared it with the implementations of some of the major Android-based ROMs
LineageOS and OxygenOS, and with the successor of Boot to Gecko, KaiOS.

We looked at the source code for each major version of Android and identified differences
between these versions. We identified a major change between Android 8.1 and Android
9 that changed the behaviour of the factory reset mechanism, specifically the way the
file system is recreated during a factory reset. As a consequence of these changes,
the way the sanitization of the flash memory is performed also changed. It no longer
uses the secure ioctl(BLKSECDISCARD) system call but rather the non-secure version
ioctl(BLKDISCARD). As discussed in this work and in literature [24], [65], [66] this may
retain data in the flash memory and allow for recovery of some or all of the data.

The other operating systems we looked at use their own recovery images, which are forks
of the Android recovery. They only have little or no changes to the original source code.
Commit ded2dac was also pulled into each code base, i.e. the issue described above is
present in LineageOS, OxygenOS as well as KaiOS starting from the versions Android 9,
LineageOS 16, OxygenOS 9, and KaiOS 3.

One possible way to fix this problem would be to call wipe_block_device during the
factory reset as done in earlier Android versions.
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