
Automatic Creation of
Low-Interaction Honeypots for
Stateless Network Protocols

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Software & Information Engineering

eingereicht von

Felix Leopold Kehrer
Matrikelnummer 01526278

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Mitwirkung: Dipl.-Ing. Christian Kudera, BSc

Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik, BSc
Univ.Lektor Dipl.-Ing. Michael Pucher, BSc

Wien, 19. Oktober 2022
Felix Leopold Kehrer Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Automatic Creation of
Low-Interaction Honeypots for
Stateless Network Protocols

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software & Information Engineering

by

Felix Leopold Kehrer
Registration Number 01526278

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Assistance: Dipl.-Ing. Christian Kudera, BSc

Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik, BSc
Univ.Lektor Dipl.-Ing. Michael Pucher, BSc

Vienna, 19th October, 2022
Felix Leopold Kehrer Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Felix Leopold Kehrer

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. Oktober 2022
Felix Leopold Kehrer

v

Danksagung

Ich danke meinen Betreuern Christian Kudera, Georg Merzdovnik und Micheal Pucher
für ihre Anregungen und ihr Feedback. Außerdem danke ich Jakob Bleier für seine
Schreibratschläge und sein Feedback.

vii

Acknowledgements

I thank my advisors Christian Kudera, Georg Merzdovnik, and Michael Pucher for their
input and feedback. Additional thanks go to Jakob Bleier for his writing advice and
feedback.

ix

Kurzfassung

Low-Interaction Honeypots stellen immer einen Kompromiss zwischen guter Interaktivität
und niedrigen Kosten dar. Es gibt bereits Programme die Low-Interaction Honeypots
automatisch erstellen, aber die so erstellten Honeypots sind weniger interaktiv als sie
sein müssten um vielseitig nützlich zu sein. Deshalb stellen wir einen Ansatz vor, mit
dessen Hilfe interaktivere Honeypots erstellt werden können, ohne Abstriche bei der
Nutzerfreundlichkeit in Kauf nehmen zu müssen. Dieser Ansatz agiert auf einer niedrigeren
Ebene als bestehende, und ist gleichzeitig flexibel genug um auch für andere Protokolle
außer HTTP(S) nützlich zu sein. Wir implementieren außerdem ein Programm namens
SyrupPot, welches in der Lage ist automatisch Kopien von bestehenden HTTP(S) zu
erstellen, die dann als Honeypots fungieren. Diese Honeypots können mehr Situationen
bewältigen als bestehende Ansätze und lassen sich leicht an neue Anforderungen anpassen.
Um ihre Nützlichkeit zu demonstrieren, erstellen wir Honeypots von IoT Geräten und
untersuchen deren Beschaffenheit.

xi

Abstract

Low-interaction honeypots are always a compromise between having good interactivity
and being cheap to create and run. Tools exist to automatically create low-interaction
honeypots, but they achieve their great usability at the cost of interactivity, limiting
their usefulness. We introduce a way of achieving better interactivity while maintaining
the same level of usability, which operates at a lower level and is flexible enough to be
used with other protocols besides HTTP(S). We implement a tool called SyrupPot to
create copies of existing HTTP(S) services automatically, which then server as honeypots.
These honeypots can handle more situations than existing approaches and are easily
adapted to new requirements. To demonstrate their usefulness we create honeypots from
IoT devices and evaluate their quality.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Background 3
2.1 Honeypots . 3
2.2 HTTP . 4

3 State of the art 7
3.1 Existing tools and approaches . 7
3.2 Limitations . 8

4 Honeypot Creation 11

5 Implementation 13
5.1 Earlier attempts . 13
5.2 Composition of the tool . 15
5.3 Limitations and future work . 19

6 Evaluation 21
6.1 SNARE . 22
6.2 SyrupPot . 22

7 Conclusion 25

Acronyms 27

Bibliography 29

xv

CHAPTER 1
Introduction

Web services are everywhere. They are in charge of countless things, from enormous
tasks like global finance to small conveniences like telling you whether it’s warm or cold
outside. Recently, there is a trend to make even the smallest sensor a little connected
computer: The Internet of Things (IoT). With more and more devices being created and
connected, their usefulness increases, but so does the risk. Large-scale malware campaigns
are becoming increasingly common, while the devices they are targeting contain more
and more sensitive information about their users. At the time of writing, a new malware
called Shikitega was only just discovered, which targets Linux-based IoT devices[1]. As
such, countermeasures are more important than ever.

In the context of a possible attack, a lot can be done to prepare. Whether that means
making the device harder to contact for unauthorized actors, hardening the hard- and
software against exploitable vulnerabilities, installing updates, setting better passwords,
identifying and inhibiting attacks, feeding the attackers false information, or any number
of other ways of making the attacker’s job harder.

On the one hand, honeypots are a great tool for achieving some of these goals. They
distract attackers from real targets, thereby wasting their time and resources, they
allow for easy detection of attacks as they are happening, and can deliver high-quality
information about such an attack. On the other hand, creating and running a convincing
honeypot often involves a substantial amount of work and resources.[2]

To combat both of these drawbacks, tools exist to automatically create low-interaction
honeypots, needing little manual intervention to create a honeypot, and few resources to
run the same. Unfortunately, these tools have stark limitations, making the honeypots
rather trivial to identify and thereby limiting their usefulness. In this paper, we present
an approach for automatically creating low-interaction honeypots from existing devices or
services that can overcome some of these limitations, and so lead to better low-interaction
honeypots in the future.

1

1. Introduction

But first, an overview:
Section 2 explains or defines some vocabulary relevant to the rest of the paper.
Section 3 talks about which related tools already exist and the problems that plague
them.
Section 4 describes our approach, and the reasoning behind it.
Section 5 recounts the development of our tool, SyrupPot, the roadblocks we encountered,
how we dealt with them, and the architecture we eventually settled on.
Section 6 goes over our evaluation setup and the results of the evaluation. And finally,
section 7 summarises the content of the paper.

We understand our contributions as the following:

• We describe the existing approaches and tools for generating low-interaction honey-
pots automatically and identify problems holding back their usefulness.

• We introduce a more general approach to low-interaction honeypot generation,
which includes collecting more data and using that data to make more convincing
honeypots.

• We describe the tool we built to demonstrate the usefulness of our approach. It
automatically creates copies of HTTP services, which can easily be deployed on
any host system supporting Docker.

• We talk about the limitations of our tool, what can be done about those limitations,
and what future improvements to the tool might look like.

2

CHAPTER 2
Background

2.1 Honeypots
A honeypot is a system that appears to be a normal system serving some normal purpose,
but which is actually engineered to not be used at all during normal proceedings. As such,
any attempt to interact with it is immediately suspicious. This concept applies rather
broadly to many forms of systematic misinformation, including things like honeywords

— fake passwords that, when used, alert the victims of a data leak that such a leak has
happened. For our purposes, a honeypot means a network service that attempts to pass
itself off as another network device or service, in order to distract attackers from valuable
targets, identify ongoing attacks and collect as much information as possible on said
attacks.

As such, the usefulness of a honeypot is directly linked to its convincingness, because the
moment an attacker figures out that a system is a honeypot, they might stop interacting
with it, try to feed it false information, or even attempt to break it, in order to hide their
tracks.

There are two basic ways of identifying a honeypot. The first is by interacting with it.
Vetterl and Clayton identify honeypots by specifically crafting probes to find out which
specific honeypot is used[3], but for an attacker, any probe that can make the honeypot
behave measurably different from a real system might do. The second way is to use
context information. Sophisticated metrics like Shodan’s Honeyscore[4] use a multitude
of data points like the history of an IP address and the network topology in addition to
probing to judge how likely an internet-connected device is to be a honeypot.[5]

A system that behaves (almost) indistinguishably from a normal system is called a
high-interaction honeypot, meaning that the honeypot can respond convincingly
to (almost) any request it receives. High-interaction honeypots usually range between
normal production systems with fake data and emulations of such systems. But, such

3

2. Background

an arrangement comes at a considerable cost in terms of resources, comparable to the
cost of a normal production system, because fundamentally, they are production systems,
just not used as such.

That’s where low-interaction honeypots come in. The idea is to trade some level
of interactivity for reduced resource and engineering requirements, by abstracting away
parts of the actual implementation of a production system and only focusing on the parts
that matter for an attack scenario. Because anything that an attacker cannot interact
with is probably not worth emulating, these are usually simple web services, sharing
the outwards appearance of a real service but offering reduced functionality, like not
maintaining state between interactions, always refusing authentication attempts, or not
offering any functionality that would require the presence of an operating system. This
also makes them less of a risk because an attacker cannot overtake and use these honeypots
like a real system because they work differently and lack many of the capabilities of a
real system.

While low-interaction honeypots are much cheaper to create and operate than their
high-interaction counterparts, they have two obvious downsides: Firstly, their limitations
make them easier to identify because their behaviour differs more from a normal system.
And secondly, should an attacker be fooled, they cannot give as much valuable information
as a high-interaction honeypot. For example, if an attacker never manages to log in to
a service, they cannot access the data they are interested in, and as such the people
or systems monitoring the honeypot never find out what the attacker was after. These
problems can be mitigated by making low-interaction honeypots better and more complex,
but not fully overcome. Such an improved low-interaction honeypot is sometimes called
a medium-interaction honeypot[2].

2.2 HTTP

HTTP, or HyperText Transfer Protocol, is one of the fundamental technologies of
today’s internet. As the name implies, its purpose is to transfer hypertext, meaning text
documents that can link to other resources. These documents are displayed to users by a
program called a *browser*. Over time HTTP has come to be used for more general web
transport of data.

HTTP works by sending messages between two parties. The client sends a request
message to the server, and the server answers with a response message. Multiple requests
and responses can be sent over the same connection, but don’t have to. Because HTTP
does not depend on the state of the connection, it is called a stateless protocol. Any
context information required is included in the messages. A collection of (related) HTTP
request/response pairs is sometimes called an HTTP flow[6].

A request message consists of a request line, some headers, and optionally a message
body. The request line specifies a resource and a method to apply to this resource.
The headers specify additional information like which data encodings the client can

4

2.2. HTTP

understand, expressed as key-value pairs. The body can contain arbitrary binary data.
A response message works similarly, but instead of a request line, it starts with a *status
line*, indicating whether the request could be fulfilled. It also uses different headers and
a body is present in most cases.

The act of extracting information from a web page is referred to as scraping. Because
a web page is, among other things, comprised of hypertext, this means it’s possible to
scrape the hyperlinks, follow them, and then scrape those pages as well. A program
doing this would be called a crawler or a spider — because it “crawls the web”.

5

CHAPTER 3
State of the art

3.1 Existing tools and approaches
Vetterl and Clayton[3] consider Conpot[7], Dionaea[8] and Glastopf [9] to be the
state-of-the-art HTTP honeypots, and between those three recommend to use Glastopf.
All three of them require the source code of a web page to function, so they cannot
impersonate a web device out of the box. Instead one needs to extract the actual web
page files from the device with another tool or manually. Vetterl and Clayton were also
able to identify instances of all three honeypots in the wild based on quirks in their server
implementations.

SNARE[10], together with its companion service TANNER[11] is the successor to
Glastopf, providing all of Glastopf’s original features, but also more: It includes a
crawler and so can create a copy of a website automatically. It also has a new server
implementation based on aiohttp[12] which can use additional information saved by the
crawler to better impersonate the original service. TANNER on the other hand handles
the vulnerability type emulation that was also one of Glastopf’s features. It essentially
tells SNARE how to respond to requests.

CHAMELEON[13] does many similar things but has a different focus. The idea behind
CHAMELEON is to identify dynamic content on a page and generate templates that
can replace these dynamic parts with other, fitting data. For instance, timestamps are
recognized and updated accordingly. Even data that is sent in the request and then
appears in the response is identified. Unfortunately, CHAMELEON is not publicly
available.

Another tool worth mentioning here is Honeyd[14]. Instead of attempting to impersonate
a device on the service level, its focus is on replicating characteristics of an OS, in particular
the network stack. It is capable of fooling tools like nmap or xprobe into identifying it as
any chosen operating system. In addition, it is capable of fooling an attacker into thinking

7

3. State of the art

there are many more servers than there are, by taking additional IP addresses in the
network and running services emulating many different vulnerable services. Development
seems to have effectively stopped as the last version was released in 2007[15] and the
latest commit on the git master branch is from 2013[16]. As such some components, like
its OS fingerprint database nmap-os-db, are noticeably out of date. Still, it remains in
active use.

HoneyPLC brings some of these ideas together. Its purpose is to impersonate an
Industrial Control System. In order to do that, it combines multiple different tools to
automatically collect the necessary information and then serve a copy of the original ICS
with enough interactivity to collect malware from attacks. Its network stack impersonation
capabilities are based on Honeyd’s. The crawling of the original ICSs web interface is
delegated to wget[17], and the copy of this web interface is served with lighttpd[18].

3.2 Limitations

Both HoneyPLC and SNARE allow the user to crawl a website. HoneyPLC uses wget’s
recursive download feature[19] for its crawling, while SNARE implements its own crawler
based on aiohttp[12]. The crawling works very much the same in both cases: Given a
starting URL, the crawler requests that URL from the server, extracts the links/URLs
from the response, then requests those as well, extracts the links from those responses,
and so on. This continues until there are no more unrequested links to follow, or until
a user-specified limit is reached. The bodies of the responses are saved as files in a
filesystem directory structure mirroring the path structure of the URLs. For example,
when requesting example.com/index.html the response body would be saved in
<output directory>/index.html. The created directory is then served, similar to
a normal webpage.

The implicit assumption of this approach is that every web resource can be treated as
static. This works well for some pages and causes problems for others. For instance,
the headers sent by most honeypots described don’t match those of the original device
at all. Not every HTML file has an explicit encoding, and when the honeypot server
implementation guesses, it sometimes guesses wrong. This can lead to obvious mistakes
like umlauts being displayed wrong, which makes such a honeypot easy to spot.

But even if the page is displayed correctly, one look at the headers is often enough to
identify a difference from the original device, because simple things like the order of the
headers are wrong. Newer versions of SNARE save some of the headers encountered by
the crawler[20]. The headers it ignores are context information like content-encoding,
date or cache-control.

Another problem is that many resources are simply missed: If a resource requires some
form of authentication to access, it will not be part of the honeypot, because none of
the tools mentioned has support for handling logins. This is unfortunate, as “interesting”
interfaces or data are usually behind some sort of authentication. So, while these

8

3.2. Limitations

honeypots can still tell us that an attack is happening, we will not learn much beyond
that, as the attacker cannot attempt to access anything.

Also, any kind of resource fetched dynamically via JavaScript is missed as well, because
JavaScript is not executed, so any of those fetches simply do not happen, again leading
to easily identifiable honeypots because pages that should work like normal are broken.

9

CHAPTER 4
Honeypot Creation

To overcome the limitations laid out, we propose the following approach:

First, instead of only saving the body of the response, we record the entire response, and
also the entire request which triggered the response. On the one hand, this preserves any
relevant header information, like the encoding. On the other, this allows the approach to
not only work for HTTP but any stateless protocol.

Second, we do not send just one request per URL, but multiple. The idea is to record
responses for different situations, which enables us to handle login scenarios and some
other situations with dynamic components. For instance, we take care to crawl every
page once with an authenticated session, and once without. For login pages, we make
sure to record multiple failed logins as well. CHAMELEON does something similar, but
the purpose there is to identify the differences in the responses.

Third, we update some information. This means things like the Date header, which
should reflect the current timestamp. In the current state, we do not update the message
bodies, unlike CHAMELEON, but simple find-and-replace substitutions are considered
future work.

Fourth, while serving, we match incoming requests against our records and identify the
best fit. Depending on the protocol or the situation, the criteria for the best fit can vary.
For HTTP matching the request line first and strictly, and then matching the headers
more loosely seems a good heuristic, but for another protocol, something like the smallest
Hamming distance might be better.

Fifth, we send back our record of the response to the closest-matching response, updated
accordingly. While there is a risk that this response might not match the attacker’s
expectations, we can at least be sure that we are sending back a response that matches
exactly what the original device would have responded to a request similar to the one
our honeypot received.

11

4. Honeypot Creation

This approach has some nice benefits, apart from the byte-correct responses to many
requests: For instance, our honeypot does not support any actual login handling – which
would be quite difficult anyway because we do not know how the original service works –
and yet it behaves as if it did. If the attacker sends a login request, it will be matched as
such, and a response sent back that matches the behaviour of the login mechanism. It will
even seemingly refuse wrong login information. And once the attacker has the necessary
authentication, their requests will also match the requests that an authenticated user
would make. We unwittingly guide the attacker onto a path which our crawler has
explored, making the interaction seem genuine.

Of course, this is not perfect and has a chance to go wrong, if an incoming request
with wrong login information still happens to match closest to a recorded one with right
information, or vice versa. Depending on the situation, this might be rather inconspicuous
in some cases, like if the login page seemingly accepts some wrong login information there
might just conceivably be an account with these login credentials. But in other situations,
this would be rather suspicious, if a page suddenly seems accessible without login. One
way to mitigate this is to make sure that unauthorized accesses are well-represented in
the original crawl, another way would be to implement some custom request matching
which follows the logic of the used login mechanism more closely.

12

CHAPTER 5
Implementation

5.1 Earlier attempts

Our first approach was to try to follow SNARE’s example and use an off-the-shelf Python
crawling framework like Scrapy or an HTTP client library like urllib, httplib, requests,
grequests, requests-threads, requests-futures, asks or aiohttp. While they differ in features
and speed, there is a problem (for our purposes) they all share: They offer raw access
to the body of an HTTP response, but not to the other parts, like the status line or
the headers. Instead, those are presented in a parsed form, like a key-value map for
response headers. This is a problem because the HTTP standard allows for quite a bit of
wiggle room in what it considers a valid message, and actual implementations are usually
even more lenient. So idiosyncracies of a device, like the order of headers, unnecessary
whitespace or lowercase headers, are lost and cannot be consistently recovered from the
available information. 1 This makes it impossible to convincingly impersonate any but
the simplest, most well-behaved devices. The problem can be alleviated by modifying
the code of those libraries to include an unaltered copy of the pre-body section, which
we successfully did for urllib.

But this does not solve another more fundamental problem: The responses are not
interpreted in any meaningful way. What this means in practice is that if a page contains
JavaScript to fetch some data dynamically, this fetch simply never happens because the
JavaScript is never executed. While JavaScript engines exist and could be used, the much

1aiohttp is a special case here. It does offer the raw_headers field https://docs.
aiohttp.org/en/stable/client_reference.html#aiohttp.ClientResponse.raw_
headers since around version 4 https://github.com/aio-libs/aiohttp/commit/
7cf0339103ac5e7bdf713563a68068621e7d9fd5. raw_headers is a list of tuples of the
key and value of each header, in the order they are read, and only slightly modified. This would probably
be enough to reconstruct the headers as sent, but the other problems described persist so it does not
change anything.

13

https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientResponse.raw_headers
https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientResponse.raw_headers
https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientResponse.raw_headers
https://github.com/aio-libs/aiohttp/commit/7cf0339103ac5e7bdf713563a68068621e7d9fd5
https://github.com/aio-libs/aiohttp/commit/7cf0339103ac5e7bdf713563a68068621e7d9fd5

5. Implementation

more practical solution is to just use a browser instead. This also means we don’t have
to crawl resources like images explicitly, because a browser will just request them while
constructing a page for the user.
There are two ways to go about this: One way is to use an embedded browser like
PhantomJS [21], CasperJS [22] or Splash[23]. Unfortunately, both CasperJS and Phan-
tomJS have been unmaintained since 2018[24]. Splash remains a viable option. The
developers of PhantomJS recommend using Selenium instead, which is the other way.
Selenium, or more specifically Selenium WebDriver, allows us to control a normal desktop
browser from a Python program. However, using Splash or Selenium has the same
problem as the libraries before: It does not give us access to the raw pre-body section of
responses, and this time patching a handful of Python functions is not going to cut it.
selenium-wire[25] gets close, but also only exposes headers as a dictionary with lenient
parsing. scrapy-selenium[26] provides a way to have Scrapy spiders use Selenium for
actual requests, but might also be unmaintained at this point in time.
So, a different approach to recording the raw HTTP messages is needed. For one, because
it is simply not a feature in existing libraries, but also because it would be very inflexible:
Because we want to be able to use different crawlers for different situations – maybe
a certain crawling library is being blocked by the device, maybe we want to record a
different protocol, maybe our crawler simply missed functionality for a certain scenario –
relying on the crawler to be able to provide raw access to the network traffic might require
major reengineering for every new situation. But if we record the traffic in another place
entirely, our crawlers can be as simple or as complex as we want and everything still
works.
To record traffic at the operating system level, many tools like tpcdump exist. For a clear
text protocol, it would be possible to use such a tool to dump all the network traffic, then
parse that and create some sort of representation that allows a server implementation to
behave accordingly. For our purposes, however, this will not do because of the existence
of HTTPS. To decrypt the traffic would require access to the private key of the server,
which is not an assumption we can make, especially since we want to have a solution
that works without manual intervention. Thankfully, there is yet another way.
By putting a proxy – which we control – between the crawler and the server, we can
circumvent the problem by splitting the encrypted connection into two parts: The proxy
communicates with the server like a client, so it can decrypt the traffic on its end, and
then pretends to be the server to the crawler, re-encrypting the traffic with its certificate
so the crawler still sees it as an HTTPS connection. Of course, the certificate does not
match that of the server, so we need to install a compatible certificate on the crawler,
but since both the proxy and the crawler are under our control, this is not a problem.
The next problem is how to make sure that the traffic passes through the proxy since
internet packets can be routed in many ways. The easiest solution would be to use the
proxy as an HTTP proxy and just have the crawler respect that. HTTP proxies are so
common that most or all of the possible crawlers described before would have this feature
out of the box. Unfortunately, a request sent to a proxy is composed differently than a

14

5.2. Composition of the tool

request sent directly to a server. The differences are manageable, but there is a better
solution: If we again work at a lower level and just let the crawler believe that the proxy
is the server it is supposed to interact with, we can use the recorded traffic as-is. For
this, we had a look at proxy.py[27], mitmproxy[28] and bettercap[29], eventually settling
on mitmproxy for a mature, well-documented tool that seems to fit the use case best. In
addition, it has nice features like automatically generating the certificates we need to
install in the crawler, and support for server-side replay[30], which means we don’t need
to implement a custom server, and can just reuse mitmproxy’s functionality instead.

One other thing we wanted to achieve is automatic login. There is a Python package
by the name of autologin, which promises to do just that. It is based on formasaurus,
which uses machine learning to identify forms on web pages which can then be filled
and submitted. While the idea seems great, the actual implementation is held back by
code rot. The last release of autologin on PyPi was in 2017[31] and the last commit
on Github in 2018[32], and for formasaurus it’s 2018[33] and 2020[34]. Unfortunately,
formasaurus is built upon libraries that have seen drastic changes in the last years and
has not kept up with those changes. sklearn moved the location of the joblib module,
meaning formasaurus fails to import it correctly. The last commit on GitHub addresses
this, but as of September 2022, those changes have not been published to PyPi. For
Flask, the situation is even worse: Formasaurus depends on exactly version 0.10.1 of
Flask, but Flask itself only specifies minimum versions for its dependencies, like Jinja.
Jinja also moved some modules around, notably the Markup module, which again breaks
imports. Neither the newest nor the oldest allowed version worked, but by trial and error,
we eventually found a working version of Jinja. We repeated this trial and error for a
handful of other dependencies. But then we got to flask-sqlalchemy. It requires version
0.7 or higher of sqlalchemy. Versions 0.7 and 0.8 are both incompatible with Python 3
and using Python 2 — which has been retired and does not even receive security support
since 2020, so really should not be used for anything anymore — breaks other parts of
the project. And any version from 0.9 onwards breaks because of another incompatibility
error that we were unable to solve. In summary, we were not able to get autologin to
work in any configuration, so we decided to instead implement a simple heuristic that
should cover most normal login situations[35].

5.2 Composition of the tool

To impersonate a service as described in Section 4, we need two components: One, a
crawler to interact with the original device and store a representation of the traffic. And
two, a server that can then use this representation to serve as our actual honeypot. For
technical reasons described in Section 5.1, the actual architecture of the crawler is more
complicated, and described here:

The first building block is Docker[36], together with Docker Compose[37]. Docker
gives us a layer of abstraction between the host system and our traffic interception. This
means we can make sure the traffic of the crawling component passes through the proxy

15

5. Implementation

without changing the host’s firewall rules (beyond what Docker does automatically).
This could be achieved by other means as well, but the ability to use prebuilt containers
simplifies deployment and maintenance drastically, and Compose allows us to accomplish
this with a single, declarative file.

The second building block is mitmproxy[28]. Not only is it one of the most popular
proxy solutions, but it also comes with features that simplify the implementation of both
the crawler and the server:

For the crawler we use mitmproxy’s reverse proxy mode, which means that mitmproxy
will impersonate a given URL by relaying every request it receives to the actual server,
and the responses back to the client. For this to work with HTTPS, which most websites
support these days — sometimes exclusively —, it generates certificates that we install
in the client. The traffic that then passes through the proxy is recorded to a file.

For the server, we use mitmproxy’s server-side replay[30] feature. When this feature is
active, mitmproxy matches incoming requests against requests contained in the file we
created during the crawling. There are ways to customize this process with options[38]:
For our purposes, we activate response refreshing[39], which updates the “date”, “expires”
and “last-modified” headers, as well as cookie expiry times, to match what a running
server would send at that moment.
We use server_replay_nopop[40], because otherwise, mitmproxy would remove used flows,
meaning it would not respond to requests it has seen before.
server_replay_kill_extra[41] kills the connection of any request for which no match can
be found.
We also use server_replay_ignore_host[42] so that the deployment URL doesn’t have to
match the URL of the original device.
server_replay_use_headers[43] is used to match on headers. In our case, this means
theCookie header, so that logins can be modeled correctly.
And finally, we use server_replay_ignore_params[44] to allow some JavaScript fetches
that would not work otherwise because of mismatched parameters.

We use Selenium[45] as the third building block. It allows us to crawl with an actual
browser so we can include requests made by JavaScript. Because setting up and running
a browser and the corresponding webdriver in a Docker container comes with some
difficulties and would require some maintenance over time, we instead chose to use the
official Selenium Standalone Firefox container[46]. Because of our Docker Compose setup
this went smoothly, we only had to include a short delay in the crawler so the crawler
would not try to begin before the Firefox container was ready to receive orders.

Since the original reasons for discounting all existing Python crawling solutions were
solved by introducing a proxy, we are free to use them. We considered using Scrapy,
together with scrapy-selenium[26], but it turned to be simpler to just implement the
crawler with Selenium as the only dependency besides Python’s standard library.

The Compose file for the crawler is listed below. It shows all four involved containers,
the volume we use to get the certificates from mitmproxy to the crawler and the network

16

5.2. Composition of the tool

configuration we use to route the relevant traffic to the proxy (note the extra_hosts
configuration of the containers).

services:
proxy:

image: mitmproxy/mitmproxy
command: ["mitmdump",

"-w", "/home/mitmproxy/out/${DOMAIN}.mitm",
"--mode", "reverse:${SPEC}",
"--listen-port", "${PORT}", "--quiet"]

tty: true
ports:
- "8080:8080"
- "8081:8081"

networks:
internal:

ipv4_address: 172.28.0.2
volumes:
- ca-certs:/home/mitmproxy/.mitmproxy
- ../out:/home/mitmproxy/out

extra_hosts:
- "${DOMAIN}:${UPSTREAM_IP}"

crawl:
build: ./crawl
command: ["python", "/usr/src/crawl/crawl.py",

"${STARTING_URL}", "${LOGIN_URL}",
"${LOGIN_A}", "${LOGIN_B}"]

networks:
internal:

ipv4_address: 172.28.0.3
extra_hosts:
- "${DOMAIN}:172.28.0.2"

volumes:
- ca-certs:/ca-certs

depends_on:
- proxy
- anon_browser
- login_browser

anon_browser:
image: selenium/standalone-chrome
environment:

17

5. Implementation

- SE_OPTS=--log-level SEVERE
networks:
internal:

ipv4_address: 172.28.0.4
extra_hosts:

- "${DOMAIN}:172.28.0.2"
depends_on:

- proxy
shm_size: 2g # crashes otherwise

login_browser:
image: selenium/standalone-chrome
environment:

- SE_OPTS=--log-level SEVERE
networks:

internal:
ipv4_address: 172.28.0.5

extra_hosts:
- "${DOMAIN}:172.28.0.2"

depends_on:
- proxy

shm_size: 2g

networks:
internal:

ipam:
config:

- subnet: 172.28.0.0/16

volumes:
ca-certs:

The server component is just mitmproxy again, using its server side replay functionality[30],
with a single command like this:

sudo mitmproxy --listen-host 0.0.0.0 --listen-port 80
--server-replay ../out/res-dev0.test.mitm
--server-replay-nopop
--server-replay-refresh
--server-replay-kill-extra
--set server_replay_ignore_host
--set server_replay_use_headers=Cookie

18

5.3. Limitations and future work

5.3 Limitations and future work
SyrupPot, our tool, has limitations. Some of these are fundamental limitations of the
approach, and others are limitations of the implementation. Of these, some could be
alleviated with additional engineering effort, but some are inherent to low-interaction
honeypots in general.

The first problem is how to provoke all (relevant) behaviour. We recursively crawl a
website and also execute JavaScript to find as many URLs as we can, but there could
always be pages not linked to from our starting page, not even indirectly. Administration
interfaces are often not linked in such a way. A solution would be to have a mechanism
for adding additional URLs to crawl, but that requires knowledge of those sites. Fuzzing
URLs — like has been done by Kim, Mingeun, et al.[47] — might lead to some success,
but we are faced with practically unbounded search space[48]. Allowing the crawler
to leave the original domain a bit might help in some cases, in case links to otherwise
unconnected pages exist in a related domain. A good compromise might be to have a
list of paths that often exist outside the main website structure, like robots.txt or
wp-admin. Another way would be to allow potentially state-changing request methods
like POST, but probably only in combination with a rigorous blacklist, so as not to
damage the original service.

The second problem is that because we know nothing of the internal workings of the
original service, we cannot reproduce its internal complexity. Let’s assume a simple
webpage on which a user can type in a number and the server responds with the square
of that number. For our honeypot to be able to correctly respond to any request an
attacker might send, we have to crawl absolutely every number the server accepts. Even
if our crawler could enumerate all those possible inputs, which it cannot, this would be
completely infeasible. For this simple example, an AI approach might do better, but
for more complex cases, involving cryptography or randomness or some secret context
information, that would fail as well. The only real solution — apart from running a
high-interaction honeypot — is to manually or semi-automatically identify such scenarios
and implement some handling logic, as was done for CHAMELEON.

The third and final problem is that of maintaining state: SyrupPot’s server treats
every interaction as purely stateless. Because of this, our honeypot scales nicely to any
number of connections, because one can always simply spawn more independent instances.
Another way to look at it is to say that no data is ever written by the server, only read.
The downside of this is that actual HTTP servers often keep quite a bit of state, whether
this means using session cookies or allowing file uploads or any number of things. Our
honeypot can only handle login scenarios because the process is baked into the data on
which our server operates. This is a severe limitation, but solving it by maintaining state
would mean manual intervention and giving up some of the scaling properties.

Apart from solving the outlined problems, there is more work to be done: We implemented
SyrupPot using only Chrome as a crawler, so we don’t cover additional user agents. While
it is unlikely, an IoT device could respond differently depending on the received user agent.

19

5. Implementation

There are two simple ways out of this though: Because of the way we structured our
tool, it’s enough to add more Selenium containers (including the extra_hosts entry),
include them in the crawling script, and maybe add them to the headers mitmproxy
considers for matching requests. The other way would be to simply tell Chrome to use a
different user agent every time. Covering more user agents means sending a lot more
requests though, which means the crawling takes longer. For reasons of usability, we
recommend only doing this if and when necessary.

Another improvement that could be made would be to try to resist identification as done
by Vetterl and Clayton[3]. It might be possible to harden our honeypot against such an
identification attack by including identification probes during the crawling phase, which
would then be part of our honeypot’s repertoire.

And finally, we would like to expand SyrupPot to cover other protocols besides HTTP.
Any interceptable stateless protocol should work, like Gemini[49], DNS[50] or WHOIS[51].
Doing this would require implementing crawlers for these protocols, which might prove
problematic, especially for protocols which don’t have explicit links to follow.

20

CHAPTER 6
Evaluation

To evaluate the effectiveness of SyrupPot, we used it on a few different devices and
planned to compare the resulting honeypots to the original devices and to honeypots
created by SNARE.

We had the following routers at our disposal:

• tp-link TL-WR841N Version 14.0

• Tenda AC1200

• PLANET WNRT-617

• NETGEAR AC1900 (R7000)

In a preliminary examination, we learned that both the PLANET and the NETGEAR
routers do not use a login page, instead relying on HTTP authentication[52], which is,
at the time of writing, not implemented in our crawler. It could be done, but because
SNARE is unable to clone any page requiring authentication anyway, and all pages on
these routers require authentication, we still would not be able to compare the tools.
That leaves us with the tp-link and the Tenda routers.

The tp-link router sports a login page requiring username and password, and the actual
login logic is handled in JavaScript. By default, the login information is “admin/admin”,
but of course, this can be changed in the settings. The Tenda router’s login page only
has a password field, and the password is set during the first setup. The computer we
used for the evaluation is an Acer Aspire VN7-592G running an up-to-date version of
Manjaro Linux with kernel version 6.0.0-1-MANJARO (64-bit).

Having used SNARE before with moderate success, we intended to create honeypots from
the two workable routers with SNARE and SyrupPot, and then compare the resulting
honeypots. But, to our surprise, we ran into problems trying to use SNARE:

21

6. Evaluation

6.1 SNARE
We considered two versions of SNARE: Version 0.3, released in 2018[53], and the latest
development version on GitHub, with the last commit being from 2021[54]. Originally we
planned to use version 0.3, since it is the latest proper release. It was “tested primarily
with >=3.4”[55], and the cloner seemed to work well with Python 3.10, finishing within
seconds. The honeypot however, failed to start because of dependency problems. So we
tried older Python versions, which came with its own set of issues because everything
older than Python 3.7 is not supported anymore. But this only led to other problems
which we were unable to solve.
Instead we tried to run the latest development version, which requires Python 3.6. Given
its newer codebase and updated dependencies this seemed promising, but it ran into an
import error on Python 3.10. This is a known problem caused by reorganised modules[56].
Because trying to run old, unsupported Python versions on Manjaro in 2022 had turned
out to be such a problem, we decided to try to match the original system used to test
SNARE as closely as we could. For this we set up a Virtual Machine (VM) running
Ubuntu 18.04 LTS. This still did not fix the issues plaguing SNARE version 0.3, but
thankfully, it did seem to work for the latest development version. The cloner, again,
ran without problems, and this time, so did the honeypot. But to our astonishment, it
turned out to be unusable: The honeypot would not respond to any request, while also
not showing any error messages.
We suspect that SNARE cannot successfully impersonate devices which don’t have a
public domain and are only reachable by IP, as this was a problem we also had to overcome
with our implementation, but that is purely speculation. Maybe the JavaScript-based
and direction-heavy ways the router’s interfaces work turned out to be a problem. It
could also conceivably have been an error on our part. All we can say for certain is that
we were unable to make working honeypots with SNARE. As such, we had to finish
our evaluation without it, instead only comparing the honeypots our tool created to the
original devices.

6.2 SyrupPot
We used the following commands to create and deploy honeypots based on the two
suitable routers:

Copy Tenda router sudo sh syruppot.sh 192.168.0.1
http://tenda.test/index.html http://tenda.test/login.html
testtest

Deploy Tenda honeypot sudo mitmproxy --listen-host 0.0.0.0
--listen-port 80 --server-replay ../out/tenda.test.mitm
--server-replay-nopop --server-replay-refresh
--server-replay-kill-extra --set server_replay_ignore_host

22

6.2. SyrupPot

Copy tp-link router sudo sh syruppot.sh 192.168.0.1
http://res-dev0.test/ http://res-dev0.test/ admin admin

Deploy tp-link honeypot sudo mitmproxy --listen-host 0.0.0.0
--listen-port 80 --server-replay ../out/res-dev0.test.mitm
--server-replay-nopop --server-replay-refresh
--server-replay-kill-extra --set server_replay_ignore_host
--set server_replay_use_headers=Cookie
--set server_replay_ignore_params=_

The URLs tenda.test and res-dev0.test are made up and only used so the traffic
can by directed via DNS entries. In most cases they can be ignored because we use
server_replay_ignore_host while deploying the copies, but they can be important if one
wants to not use server_replay_ignore_host or if the service uses absolute links to its
own pages. In this case one should use an URL at which the honeypot will then be
reachable.

Also of note is that we use slightly different commands for our honeypot deployments.
We left out server_replay_use_headers=Cookie for the Tenda router because it uses
complex cookies which could not be matched against the cookies on record. And we
added server_replay_ignore_params=_ for the tp-link router because it uses the “_”
parameters with changing values, but mitmproxy by default matches those parameters
strictly. The fixes for both problems are simple enough but would require creating a
mitmproxy plugin.

When interacting with our honeypots, they mostly met our expectations. The login pages
worked like real login pages on both honeypots: With the right login information, the
user is redirected to the main interface page, and with wrong login information, they
are not. The actual interfaces behind the logins are a bit more of a mixed bag. They
look like the interfaces they are copying, but some elements are either not interactable or
downright missing. The reason for this is that some parts of these pages are requested
with randomly generated numbers as queries, and mitmproxy unfortunately lacks a
feature to ignore they query string wholesale. Again, this could be easily implemented in
a plugin.

Looking at the structure of the responses, and the headers in particular, they are
identical from those of the original devices, apart from the Date and Last-modified
headers, which only the Tenda router uses. This comes as no suprise given that those
responses are just replayed from the records, except for the updated fields. Those
Date and Last-modified fields are noteworthy however. The Tenda router had sent
responded with Date: Thu Jan 01 03:39:44 1970, and our mitmproxy honeypot
had updated it to Date: Sun, 04 Jan 1970 21:19:05 GMT. The change in time
is correct and wanted — even if the actual date is obviously nonsense — but the format
has also changed slightly.

23

6. Evaluation

Looking at RFC 7231[57], we can see that the Tenda router breaks protocol twice: On
one hand, it’s not allowed to even send the Date header at all because it doesn’t have
the right time: “An origin server MUST NOT send a Date header field if it does not
have a clock capable of providing a reasonable approximation of the current instance
in Coordinated Universal Time.”[58] And on the other hand, one look at the provided
form example “Date: Tue, 15 Nov 1994 08:12:31 GMT”[58] shows us that the
router uses the wrong format, which mitmproxy cleans up in the process of updating it.
The same is true for the Last-modified header. In this particular case, it would be
better to use –no-server-replay-refresh[59] and just leave the headers as they are, since
the timestamp they provide is meaningless anyway, or handle it in a plugin.

Two flaws remains: Because we deactivated Cookie matching for our Tenda honeypot,
the actual interface can be accessed without having logged in successfully. For our
demonstration this does not really matter, but for a proper honeypot Cookies should
be handled accordingly. And while login attempts with wrong information do not work,
the response they receive does not always match what the original device would answer
because there is no matching traffic on record. This too could be solved in a mitmproxy
plugin, by simply matching any wrong login attempts to one of the wrong logins attempts
on record.

We feel like this sufficiently demonstrates the usefulness and potential of our approach
and hope it will lead to smarter, more effective honeypots in the future.

24

CHAPTER 7
Conclusion

In this paper, we laid out the available tools for creating low-interaction honeypots
automatically and their shortcomings. To overcome these shortcomings, we suggested an
approach that looks at request/response pairs as a whole, in order to allow a honeypot to
be more convincing in most cases. It also enables such a honeypot to handle additional
challenges not covered by other approaches. We implemented a tool which can create
low-interaction HTTP honeypots without specialised knowledge or dynamic user input.
We describe the engineering challenges we faced, some of which we were able to solve.
For those problems we could overcome we described the architectural changes we had to
make in order to make the implementation possible. And for those we did not solve, we
explained the problems to the best of our ability, and what could be done to solve them.
Finally, we demonstrated the approach’s potential in practical examples with our tool.
The resulting work not only addresses the limitations of existing approaches but can also
serve as a basis for better honeypots in the future.

25

Acronyms

IoT Internet of Things. 1

VM Virtual Machine. 22

27

Bibliography

[1] https://cybersecurity.att.com/blogs/labs-research/
shikitega-new-stealthy-malware-targeting-linux.

[2] I. Mokube and M. Adams, “Honeypots: concepts, approaches, and challenges,” in
Proceedings of the 45th annual southeast regional conference, pp. 321–326, 2007.

[3] A. Vetterl and R. Clayton, “Bitter harvest: Systematically fingerprinting low-and
medium-interaction honeypots at internet scale,” in 12th USENIX Workshop on
Offensive Technologies (WOOT 18), 2018.

[4] https://honeyscore.shodan.io/.

[5] E. López-Morales, C. Rubio-Medrano, A. Doupé, Y. Shoshitaishvili, R. Wang,
T. Bao, and G.-J. Ahn, “Honeyplc: A next-generation honeypot for industrial
control systems,” in Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pp. 279–291, 2020.

[6] https://docs.mitmproxy.org/stable/api/mitmproxy/flow.html.

[7] http://conpot.org/.

[8] https://www.honeynet.org/projects/active/dionaea/.

[9] http://mushmush.org/.

[10] https://github.com/mushorg/snare.

[11] https://github.com/mushorg/tanner.

[12] https://docs.aiohttp.org/en/stable/.

[13] M. Musch, M. Härterich, and M. Johns, “Towards an automatic generation of
low-interaction web application honeypots,” in Proceedings of the 13th International
Conference on Availability, Reliability and Security, pp. 1–6, 2018.

[14] N. Provos et al., “A virtual honeypot framework.,” in USENIX Security Symposium,
vol. 173, pp. 1–14, 2004.

29

https://cybersecurity.att.com/blogs/labs-research/shikitega-new-stealthy-malware-targeting-linux
https://cybersecurity.att.com/blogs/labs-research/shikitega-new-stealthy-malware-targeting-linux
https://honeyscore.shodan.io/
https://docs.mitmproxy.org/stable/api/mitmproxy/flow.html
http://conpot.org/
https://www.honeynet.org/projects/active/dionaea/
http://mushmush.org/
https://github.com/mushorg/snare
https://github.com/mushorg/tanner
https://docs.aiohttp.org/en/stable/

Bibliography

[15] http://www.honeyd.org/.

[16] https://github.com/DataSoft/Honeyd.

[17] https://www.gnu.org/software/wget/.

[18] https://www.lighttpd.net/.

[19] https://www.gnu.org/software/wget/manual/html_node/
Recursive-Download.html.

[20] https://github.com/mushorg/snare/commit/
098298daacb75d403a26f88d516220d9d00894d2.

[21] https://phantomjs.org/.

[22] https://github.com/casperjs/casperjs.

[23] https://github.com/scrapinghub/splash.

[24] https://github.com/ariya/phantomjs/issues/15344.

[25] https://github.com/wkeeling/selenium-wire.

[26] https://github.com/clemfromspace/scrapy-selenium.

[27] https://github.com/abhinavsingh/proxy.py.

[28] https://mitmproxy.org/.

[29] https://www.bettercap.org/.

[30] https://docs.mitmproxy.org/stable/overview-features/
#server-side-replay.

[31] https://pypi.org/project/autologin/.

[32] https://github.com/TeamHG-Memex/autologin.

[33] https://pypi.org/project/formasaurus/.

[34] https://github.com/TeamHG-Memex/Formasaurus.

[35] T. of the Northwest, “How browser’s identify login forms?.” https://
stackoverflow.com/a/1976796.

[36] https://www.docker.com/.

[37] https://docs.docker.com/compose/.

[38] https://docs.mitmproxy.org/stable/concepts-options/#server_
replay.

30

http://www.honeyd.org/
https://github.com/DataSoft/Honeyd
https://www.gnu.org/software/wget/
https://www.lighttpd.net/
https://www.gnu.org/software/wget/manual/html_node/Recursive-Download.html
https://www.gnu.org/software/wget/manual/html_node/Recursive-Download.html
https://github.com/mushorg/snare/commit/098298daacb75d403a26f88d516220d9d00894d2
https://github.com/mushorg/snare/commit/098298daacb75d403a26f88d516220d9d00894d2
https://phantomjs.org/
https://github.com/casperjs/casperjs
https://github.com/scrapinghub/splash
https://github.com/ariya/phantomjs/issues/15344
https://github.com/wkeeling/selenium-wire
https://github.com/clemfromspace/scrapy-selenium
https://github.com/abhinavsingh/proxy.py
https://mitmproxy.org/
https://www.bettercap.org/
https://docs.mitmproxy.org/stable/overview-features/#server-side-replay
https://docs.mitmproxy.org/stable/overview-features/#server-side-replay
https://pypi.org/project/autologin/
https://github.com/TeamHG-Memex/autologin
https://pypi.org/project/formasaurus/
https://github.com/TeamHG-Memex/Formasaurus
https://stackoverflow.com/a/1976796
https://stackoverflow.com/a/1976796
https://www.docker.com/
https://docs.docker.com/compose/
https://docs.mitmproxy.org/stable/concepts-options/#server_replay
https://docs.mitmproxy.org/stable/concepts-options/#server_replay

Bibliography

[39] https://docs.mitmproxy.org/stable/overview-features/
#response-refreshing.

[40] https://docs.mitmproxy.org/stable/concepts-options/#server_
replay_nopop.

[41] https://docs.mitmproxy.org/stable/concepts-options/#server_
replay_kill_extra.

[42] https://docs.mitmproxy.org/stable/concepts-options/#server_
replay_ignore_host.

[43] https://docs.mitmproxy.org/stable/concepts-options/#server_
replay_use_headers.

[44] https://docs.mitmproxy.org/stable/concepts-options/#server_
replay_ignore_params.

[45] https://www.selenium.dev/.

[46] https://hub.docker.com/r/selenium/standalone-firefox.

[47] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Firmae: Towards large-
scale emulation of iot firmware for dynamic analysis,” in Annual Computer Security
Applications Conference, pp. 733–745, 2020.

[48] https://stackoverflow.com/questions/417142/
what-is-the-maximum-length-of-a-url-in-different-browsers.

[49] https://gemini.circumlunar.space/.

[50] https://en.wikipedia.org/wiki/Domain_Name_System.

[51] https://en.wikipedia.org/wiki/WHOIS.

[52] https://developer.mozilla.org/en-US/docs/Web/HTTP/
Authentication.

[53] https://github.com/mushorg/snare/releases/tag/v0.3.

[54] https://github.com/mushorg/snare/commit/
0919a80838eb0823a3b7029b0264628ee0a36211.

[55] https://github.com/mushorg/snare/tree/0919a80838eb0823a3b7029b0264628ee0a36211.

[56] https://github.com/mushorg/snare/issues/315.

[57] https://www.rfc-editor.org/rfc/rfc7231.

[58] https://www.rfc-editor.org/rfc/rfc7231#section-7.1.1.2.

[59] https://github.com/mushorg/snare/issues/315.

31

https://docs.mitmproxy.org/stable/overview-features/#response-refreshing
https://docs.mitmproxy.org/stable/overview-features/#response-refreshing
https://docs.mitmproxy.org/stable/concepts-options/#server_replay_nopop
https://docs.mitmproxy.org/stable/concepts-options/#server_replay_nopop
https://docs.mitmproxy.org/stable/concepts-options/#server_replay_kill_extra
https://docs.mitmproxy.org/stable/concepts-options/#server_replay_kill_extra
https://docs.mitmproxy.org/stable/concepts-options/#server_replay_ignore_host
https://docs.mitmproxy.org/stable/concepts-options/#server_replay_ignore_host
https://docs.mitmproxy.org/stable/concepts-options/#server_replay_use_headers
https://docs.mitmproxy.org/stable/concepts-options/#server_replay_use_headers
https://docs.mitmproxy.org/stable/concepts-options/#server_replay_ignore_params
https://docs.mitmproxy.org/stable/concepts-options/#server_replay_ignore_params
https://www.selenium.dev/
https://hub.docker.com/r/selenium/standalone-firefox
https://stackoverflow.com/questions/417142/what-is-the-maximum-length-of-a-url-in-different-browsers
https://stackoverflow.com/questions/417142/what-is-the-maximum-length-of-a-url-in-different-browsers
https://gemini.circumlunar.space/
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/WHOIS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://github.com/mushorg/snare/releases/tag/v0.3
https://github.com/mushorg/snare/commit/0919a80838eb0823a3b7029b0264628ee0a36211
https://github.com/mushorg/snare/commit/0919a80838eb0823a3b7029b0264628ee0a36211
https://github.com/mushorg/snare/tree/0919a80838eb0823a3b7029b0264628ee0a36211
https://github.com/mushorg/snare/issues/315
https://www.rfc-editor.org/rfc/rfc7231
https://www.rfc-editor.org/rfc/rfc7231#section-7.1.1.2
https://github.com/mushorg/snare/issues/315

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Honeypots
	HTTP

	State of the art
	Existing tools and approaches
	Limitations

	Honeypot Creation
	Implementation
	Earlier attempts
	Composition of the tool
	Limitations and future work

	Evaluation
	SNARE
	SyrupPot

	Conclusion
	Acronyms
	Bibliography

