
Towards Practical Methods to Protect the Privacy of
Location Information with Mobile Devices

Christoph Hochreiner, Markus Huber, Georg Merzdovnik and Edgar Weippl
SBA Research

Sommerpalais Harrach, Favoritenstrasse 16, 2. Stock, AT-1040 Vienna, Austria
{chochreiner,mhuber,gmerzdovnik,eweippl}@sba-research.org

ABSTRACT
Smartphones and tablet computers continue to replace traditional
mobile phones and are used by over one billion people worldwide.
A number of novel security and privacy challenges result from the
possibility to extend the functionality of smartphones with third-
party applications. These third-party applications require that users
provide personal information to third-party applications in exchange
for additional features. This paper focuses on one specifically sen-
sitive information requested by third-party applications, namely:
location information. We discuss current methods to protect the pri-
vacy of location information and evaluate two approaches in depth.
First, we introduce an extension to improve the usability of cur-
rent interception methods on an operating system level. Second,
we evaluate the applicability of proxy-level interception on basis of
real-world Android applications. Our findings significantly extend
the state-of-the-art regarding the protection of location information
on mobile devices and further highlight open research challenges.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection;
K.4.1 [Computers and society]: Public Policy Issues— Privacy

General Terms
Design, Security, Privacy

Keywords
mobile computing, location obfuscation, privacy protection, An-
droid

1. INTRODUCTION
The growing usage of smart phones and tablets raises novel chal-
lenges for user privacy. People rely on third-party applications to
extend the functionality of their phones, in exchange for transmit-
ting personal information. Location-based applications are a grow-
ing category of mobile applications, which transmit sensitive in-
formation to third parties. According to a survey by Kessinger and
Gellman [22] almost sixty percent of Americans use location-based
applications despite privacy concerns. In this paper we explore

strategies to protect the privacy of location information regarding
mobile third-party applications. Location aware applications use
the geographic location information of the device to provide con-
venient services, like the search for nearby points of interest (POI).
Besides the retrieval of nearby POI, these applications are often
used to inform other people about the current location or popu-
lar places [25], to record sportive activities [3], to retrieve weather
forecasts, or simply to use the application for navigation purposes
[21]. Although location aware applications are convenient, they
also interfere with the privacy of their users [26, 24]. Security and
privacy issues range from unauthorized collection of location in-
formation to interpretation of collected data to derive behavioral
patterns. These patterns reveal a significant amount of private in-
formation about the user, like daily habits, shopping preferences
and< working habits [13]. Users are often unaware that their pri-
vacy is violated by location aware mobile applications and are thus
not concerned about the disclosure of their location information to
third parties. In 2005, only about 25 % of users were concerned
about the privacy implications which might occur after disclosing
their location information [20]. Similar surveys by Kaasinen [21],
Barkhuus et al. [6], and Benisch et al. [8] support these figures.
Within the last years the sensitivity in disclosing location informa-
tion however has risen [14]. The main reason for this increased
sensitivity is that all major mobile operation systems implemented
dedicated privacy settings. Besides unaware users, there are also
privacy sensitive users, who want control on their location privacy
or at least want to be informed on the location information which
is transmitted to external services [8, 11]. The demand of control
varies based on the application type respectively on the date and
the time of the day. Typical examples for an increased requirement
of location privacy are stays in a hospital or nightclub visits, while
the location tracking in a foreign city on vacation might create less
demand for additional privacy protection methods.

Beresford and Stajano [10] where among the first, who raised the
awareness for privacy issues regarding location-based services. Since
their publication there have been several researchers who attempted
to provide a solution to this problem on an architectural level [29, 7,
18, 5] or by providing usable mitigation strategies, such as obfusca-
tion algorithms [4, 23, 7, 12, 28]. Although there have been numer-
ous projects and publications, no solution exists, which allows the
user to use location-aware mobile applications while maintaining
the privacy of the user at the same time. The main contributions of
this paper are:

• We provide an overview on existing mechanisms to protect
the privacy of location information of current mobile operat-
ing systems.



• We propose enhancements for state-of-the-art locations ob-
fuscation methods for mobile applications.

• We implement our proposed privacy extensions and evaluate
their feasibility based on real-world Android applications.

• We discuss the feasibility of location obfuscation on current
mobile platforms and discuss open challenges.

The remainder of this paper is structured as follows. Section 2 pro-
vides a brief background on current methods to obfuscate location
information on mobile devices. In Section 3 we present the design
of our two proposed privacy protection systems and discuss their
evaluation in Section 4. We discuss our findings in Section 5 to
finally draw conclusion in Section 6.

2. BACKGROUND
With the goal to reduce the negative privacy impacts of location in-
formation, researchers as well as mobile operating system develop-
ers proposed privacy-preserving frameworks. This section provides
an overview on different improvements to enforce location privacy
on modern mobile operating systems as well as generic protection
strategies.

2.1 OS-specific approaches
In 2013 the two most popular mobile operating systems were iOS
and Android, which together accounted for over 90 % of sold mo-
bile devices [15]. Therefore we concentrate on these Platforms and
give a short overview on how they handle location information re-
spectively.

2.1.1 iOS
Prior to the sixth major release of iOS, the operating system only
allowed the user to enable or disable location services for all appli-
cations. In iOS 6 this setting was improved, by allowing the user to
enable the location service for each application individually1. By
default the location services are disabled for every application. Ev-
ery application, which requests the location information, prompts
the user to allow the application to access the location information.
The user can then decide to enable the location access for this ap-
plication or stick with the default setting and deny it. Besides the
general settings, there are also user awareness features. Every time
an authorized app obtains location information, an icon in the status
bar indicates, that the location Application Programming Interface
(API) was queried by an application. The user can then open the
preferences menu to check which application requested the location
information. This feature does not improve the privacy of the user,
but it informs the user about issued location requests and therefore
improves the awareness about the users location privacy. Due to
the restrictive policies by Apple, it is impossible to alter the loca-
tion information preferences without modifying the stock operating
system. Root access on iOS allows the installation of applications,
which are not available in the official Apple market. For example,
Protect my Privacy is an unofficial application which is designed to
protect the user’s personal information on IOS devices [1]. To im-
prove the location privacy, this application makes use of the already
implemented location privacy settings and adds the functionality to
provide a fake location for each application.

1http://support.apple.com/kb/HT5467

2.1.2 Android
The location privacy settings of current Android releases provide
rudimentary options. The privacy settings only allow the user to
globally enable or disable the location services but not for each ap-
plication individually. Besides the global setting, the preferences
also provide some functionality to set the location granularity for
applications. The user can choose, if he wants to use either GPS
- satellites, Wi-Fi and the mobile network location or both ap-
proaches to determine the location of the mobile device. Although
this feature is intended to save battery power, it can also be used to
simulate different levels of location granularity, by choosing one of
the different location retrieval approaches. The GPS approach in ur-
ban areas and the mobile network location in rural ones reduce the
accuracy of the location information and therefore improve the pri-
vacy of the user. Besides the minimalistic location privacy settings,
the operating system also implements a visual notification upon lo-
cation requests. Currently the only possibility to adjust the privacy
settings is to install external privacy extensions, like PDroid2, Pri-
vacyGuard [29] or AppFence [19]. Some of these privacy exten-
sions can be obtained from the Google Play store3, while others
require root access to install them. Besides the additional configu-
ration capabilities, some extensions, like MockDroid [9] implement
a mocking functionality to fake locations. Henne et al. [17] devel-
oped the “Android Location Privacy Framework” (ALPF) to extend
the concept of providing only fake location information. Instead
of only providing two choices, namely deactivate the location in-
formation or provide fake location information, they implemented
additional algorithms, which can be used to obfuscate the actual
location information. These algorithms provide different levels of
location granularity and the user can select different algorithms to
adjust the granularity according to his requirements. The ALPF
framework is useful to provide people with privacy choices, but
for an average user, the configuration possibilities of this applica-
tion might be confusing. Both MockDroid and ALPF are based on
Cyanogenmod4, which is a developer friendly port of the Android
code base. These two applications heavily interfere with the inter-
nals of the mobile operating system and it is not trivial to install
them on mobile devices.

2.2 Generic approaches
Besides the different privacy extensions, which can be installed on
existing mobile operating systems, there are also generic location
obfuscation architectures, which we describe in the following.

2.2.1 Proxy
Bellavista et al. [7] propose a proxy system to change the location
granularity according to user- as well as service-requirements. The
proxy consists of a client proxy which is compulsory and a server
proxy which is optional. The client side proxy is deployed on a
mobile device and the user configures this proxy by entering a lo-
cation granularity level, which is acceptable for him. The server
side proxy is deployed on the server, which provides the service,
and the configuration describes the minimal level of location gran-
ularity that is required to provide the service. This architecture pro-
vides two different procedures to improve the privacy of the user. If
the system only contains a client side proxy, the proxy reduces the
location granularity according to the user’s configuration and trans-
mits the location information to the server. In the second scenario,

2https://play.google.com/store/apps/details?id=
com.privacy.pdroid
3https://play.google.com/store
4http://www.cyanogenmod.org

http://support.apple.com/kb/HT5467
https://play.google.com/store/apps/details?id=com.privacy.pdroid
https://play.google.com/store/apps/details?id=com.privacy.pdroid
https://play.google.com/store
http://www.cyanogenmod.org


when the system consists of a client side proxy and a server side
proxy, these two proxies open a secured connection and negotiate
a location granularity level based on the provided configurations.
The goal is to provide as little information as possible, while main-
taining the quality of service. This system is a rather theoretical
approach and the authors made recommendations on how this sys-
tem could be embedded into existing mobile operating systems.

2.2.2 Framework
The framework-based approach requires a modification of the un-
derlying mobile operating system and additional changes regard-
ing third-party applications. Such frameworks introduce a more
detailed location API, which can be used to negotiate the level of
location granularity. The Confab toolkit [18] provides such a com-
prehensive framework, which can be used by application develop-
ers to easily implement privacy-sensitive applications. The frame-
work consists of a data model, which represents different privacy
preferences issued by a user, e.g. the location granularity, and of
a library which can be embedded into applications. The library
provides different methods and policies, which can be used to im-
plement the communication among clients and the server. Each
component of the system has to implement the library in order to
create a location privacy aware system.

2.2.3 Trusted Third Party (TTP)
The TTP approach adds an additional external component to the
already existing system. The existing system consists of applica-
tions, which are installed on mobile devices, and service providers,
which are deployed on external servers. The TTP component is in-
troduced between the application and the service to obfuscate the
location information by means of an implemented location obfus-
cation algorithm. While the flow of the request message is identical
to other architectures, the response message is routed over the TTP
component. This routing process is transparent for the server, so
that the server does not detect the application of obfuscation algo-
rithms. There are several different proposals, which make use of
the TTP concept, such as Caspar [27] or Privacy Grid [5]. Both
systems implement the K-anonymity algorithm and implement a
similar architecture to preserve the privacy of the user.

Although all of the presented location obfuscation methods can be
used to improve the location privacy of users, they also have a num-
ber of disadvantages. While the commercial approaches are intu-
itive and provide a high level of usability, they lack the functionality
to assign different levels of location granularity for each application
individually. One of the most sophisticated extensions is the se-
lective cloaking extension by Henne [17]. This application allows
appropriate configuration possibilities, but there could be some us-
ability improvements. These usability improvements should sup-
port the user either by selecting appropriate default algorithms or
clustering similar applications to reduce the configuration effort.
Besides the usability aspect, this extension is built upon Cyanogen-
mod and requires a significant amount of effort to be deployed on
mobile devices. Generic approaches suggest different promising
ideas but often do not apply for state-of-the-art mobile devices. The
major drawback of the framework-approach is, that they have to be
implemented by every application developer. It can be argued that
application developers do not employ these privacy protection mea-
sures because a reduced location granularity does not provide any
competitive advantage over other applications. The last approach,
the TTP, provides a location obfuscation architecture, which can be
added on top of the existing application infrastructure. The addition

of a TTP does not require any changes to the mobile operating sys-
tem, besides routing the traffic over the TTP component. Although
this approach is promising in terms of implementation for already
existing systems, the problem of trust is ultimately shifted from the
application server to the TTP component. The major difference be-
tween the proxy and the TTP approach is, that the proxy approach
is transparent for the applications while in the TTP scenario, the
application makes active use of the TTP.

3. DESIGN
This section outlines the design of two different approaches we sug-
gest to tackle the challenge of location privacy on mobile devices.

3.1 Default Situation
All modern mobile operating systems implement a very similar ar-
chitecture in terms of location information retrieval and commu-
nication with external servers. A typical workflow is started by
a user who triggers a location -based service within an applica-
tion and the application presents the result to the user. Hence, the
workflow focuses on the retrieval of the location information and
the communication between the application and external servers.
The user initiates the workflow by requesting a location-based ser-
vice from an application, which is installed on a mobile device.
The mobile device issues a request to retrieve the location infor-
mation from the location provider (e.g. Wi-Fi, GPS). The loca-
tion provider gathers the actual location information and returns it
to the application. Based on the location information the applica-
tion then creates a request, which is transmitted to the dedicated
server. The server performs different operations and generates a
machine-readable result which is sent back to the application (e.g.
Weather:Pittsburgh:7:Fahrenheit). At the end of the workflow the
application processes the machine-readable result and presents it to
the user.

3.2 Proxy-based interception
The proxy based interception approach makes use of an external
component to intercept all outgoing traffic from the mobile device.
This external component acts as a proxy and is capable of extract-
ing the payload out of normal traffic as well as breaking secured
communication to extract the application payload. The payload
contains all kind of information, including the location information
of the user, which is transmitted between the mobile application
and the third-party application server. The proxy filters the incom-
ing payload based on a predefined rule-set and passes all messages,
which contain location information, on to an obfuscation service.
The obfuscation service modifies the location information and re-
turns the message to the proxy, which transfers the obfuscation lo-
cation information to the original target server. The application
server only receives location information that is conform with the
privacy policy of the user.

The most important advantage of this approach is its usability be-
cause users can easily deploy this interception mechanism on a mo-
bile device. The user is only required to change the network con-
figuration of the mobile phone and to add the proxy’s HTTPS cer-
tificate. In addition, this interception approach is operating system
agnostic from a technical point of view. Proxy-based interception
provides a usable and independent location obfuscation technique
but requires preparatory work. Mobile applications do not use a
single standard to exchange messages with servers and customized
interception templates are thus required.



3.2.1 Architecture
The system design for the proxy-based interception requires two
additional subsystems as compared to the default setup. These ad-
ditional systems are deployed outside of the mobile device on ded-
icated hardware. In the following we discuss the modifications to
the default service request workflow and provide a short descrip-
tion on the additionally required components. The first part of
the default workflow (see 3.1) remains identical but the request
to the application server changes. Figure 1 outlines the architec-
ture of the proxy-based interception method. When the application
tries to send the request directly to the server, the request is in-
tercepted. The interceptor analyses all messages, which originate
from the mobile device and filters out messages, which are known
to come from location based applications and contain location in-
formation. If the interceptor finds such a message, it is passed on
to the message utility component, which extracts the location in-
formation from the message. Besides the location information, this
message utility also extracts the unique ID of the application, which
created the request. The unique ID and the location information are
returned to the interceptor who passes them on to the obfuscation
component. The obfuscation component retrieves the obfuscation
configuration from a database, based on the unique ID. It consists of
the required algorithm and further obfuscation relevant properties.
Based on the configuration, the obfuscation component then se-
lects the designated location obfuscation algorithm and obfuscates
the location information. The result of this obfuscation procedure,
the obfuscated information, is returned to the interception compo-
nent. Once more the interceptor makes use of the message utility
and replaces the actual location information with the obfuscated
one. The modified message now contains the obfuscated location
information and is passed on to the dedicated server. As soon as the
server receives the message, the result is generated and encoded in a
machine-readable structure. This structure is then directly returned
to the application. The application interprets the machine-readable
results and represents the result to the user in a human readable
manner. The workflow above describes a successful message in-
terception, which is only possible if the location based application
and the structure of the messages, which contain location informa-
tion are registered in advance. For all other messages, the intercep-
tion component performs a wild card search, where the messages
are scanned for the keywords long and lat, which are commonly
used to transmit location information respectively the current co-
ordinates. If any message contains these keywords, the intercep-
tion utility stores the message as a basis for further signature cre-
ations. In contrast to the proxy provided in the literature [7], this
proxy does not require any interaction with the application devel-
opers within their applications on the mobile device as well on their
external servers.

3.3 Operating system level interception
An alternative to the proxy based interception approach is the in-
terception of location information on an operating system level and
its obfuscation before it even reaches the application. This ap-
proach requires the modification of the mobile operating system
itself. Therefore, this interception method is only feasibly for open
source operating systems such as Android. For closed source sys-
tems, e.g. iOS, reverse engineering would be required in order to
perform the necessary system modification. The actual modifica-
tion of the operating system consists in implementing a wrapper
for the location API to modify the location information based on
specified user policies. The downside of this approach is the setup
phase whereas a considerable amount of work is required in order
to modify the mobile operating system. Interception on an operat-

Obfuscation system

User

Server

Application

Interceptor

Location
provider

Obfuscator

Message 
Utility

Mobile Device

Configuration

Interception system

Figure 1: Proxy architecture

ing system level is therefore not applicable on a large-scale because
it is not easy to set-up by the average user.

3.3.1 Architecture
The system design for the system level interception includes three
additional components compared to the initial setup. All of these
additional components are deployed on the mobile device and the
message flow becomes more complex as compared to the default
setup. The trigger for this modified workflow is the same as the
one in the initial setup (see 3.1). Figure 2 outlines the architec-
ture of the system level interception method. The user requests a
location-based service from an application, which is deployed on
the mobile device. In order to provide this service, the application
tries to retrieve the location information from the location provider.
As a result of the modification of the mobile operating system, an
additional component intercepts this location request and stores the
unique ID of the requesting application internally. The intercep-
tor then issues a new location information request and retrieves the
actual location information from the location provider. The result
of this newly issued request and the unique ID of the application
are then forwarded to the obfuscation component. The obfuscation
component is designed to modify the actual location information
according to a default privacy policy or a privacy policy issued by
the user. An automatic process carries out the categorization of a
newly installed application. Based on the category assignment, the
obfuscation component retrieves the obfuscation configuration for
the specific application from the internal database. The actual loca-
tion obfuscation is carried out, by calling the obfuscation method
with the retrieved configuration and the actual location information.
Based on the configuration and actual location information, the ob-
fuscation method generates a new location information. This newly



User

Server Application

Interceptor

Location
provider

Obfuscator

Category 
Detection

Mobile Device

Configuration

Figure 2: System interception architecture

generated location information is then returned to the interception
component, which returns the generated location information to the
issuing application. The remaining part of this workflow is identi-
cal to the initial setup.

The execution of this workflow is carried out transparently for the
application as well as for the user. The user does not notice any
differences, between the workflow in the initial situation and the
workflow for the system level interception. The requested result
is also identical, assumed that an appropriate location obfuscation
algorithm was selected.

3.4 Obfuscation of location information
For the actual obfuscation of the location information, there are
several obfuscation algorithms available. These algorithms range
form very simple spatial approaches [4] over time based obfus-
cation up to location information based on semantic information
about the environment [12, 7].

The privacy improvements provided by a location obfuscation algo-
rithm depends on the use case scenario of the user and the selected
obfuscation algorithm. A more detailed description of location ob-
fuscation algorithms is out of scope for this publication, but a good
starting point are the classifications provided by Wernke [30] and
Andersen [2].

4. EVALUATION
This section describes the prototypical implementation and evalua-
tion of privacy protection methods for location information.

4.1 Proxy based interception
We created a prototypical implementation of the proxy based in-
terception method in Java and in addition relied on mitmproxy5

to intercept the HTTPS traffic between mobile phones and applica-
tion servers. To evaluate our approach we deployed the interception
proxy on a Raspberry Pi (Model B) and used a second Raspberry Pi
to perform obfuscation operations. The sample for our evaluation
consisted of the top 100 free applications of the Google Play store
and was collected in December 2013.
5http://mitmproxy.org

4.1.1 Evaluation
In the first phase, all top 100 free applications were installed on a
Nexus S Android device. In the course of the installation phase, all
applications, which did not request access to the location API, were
excluded from further evaluation. The succeeding phase was used
to identify whether the applications transmit the location informa-
tion to an external server and if so, how this location information
is encoded. To identify the location information usage of the appli-
cation, the application was started and events were manually trig-
gered. The proxy recorded all messages, which were sent since the
start of the application until the application was terminated. The
message utility analyzed the messages, to verify whether they con-
tained the keywords long and lat or the current coordinates. If these
keywords were present, the message and the request URL of the
message were stored in the configuration. This basic heuristic of-
fers a suitable approach to identify the majority of all messages,
which transport location information. The messages of the remain-
ing applications were either identified by querying the messages
with the actual coordinates respectively by manual analysis. In the
following we created unique signatures based on the application
target hostnames. The stored messages were further used to create
location information extraction templates. This process was exe-
cuted for all applications, which requested access to the location
API. In the last phase, the applications were started again and the
same events were triggered. During this final phase we verified if
the signatures work as indented and if application developers use
countermeasures against the modification of messages by a proxy.

4.1.2 Results
Figure 3 outlines the findings of our evaluation. Among the 100
applications, there were 43 applications, which requested access to
the location API, but only 31 of these applications actually commu-
nicated the location information to an external server. This implies
that twelve applications requested access to the location API but
did not make use of this permission.

Among the 31 applications, which transmitted the location infor-
mation to an external server, only half of them actually provided
location-based services for the user. The other half only uses the
location information for statistical purposes or as a parameter for
ad-networks, which was a very common use case within the ana-
lyzed applications. The transferred location information could be
intercepted and modified for the majority of applications (21). For
ten applications the modification of location information was how-
ever not possible. Seven out of these ten applications used certifi-
cate pinning to prevent the interception of application traffic. Cer-
tificate pinning describes a process, where applications additionally
check the provided certificate against trusted validation data. The
remaining three applications provided photo enhancement features
and embedded the location information into transferred pictures
within the Exchangeable Image File Format (EXIF). Our prototype
focused on the modification of exchanged messages and did not
modify embedded location data. Finally, our evaluation shows that
popular applications often use location information for advertise-
ment purposes. Location information is thus transferred to third-
party advertising companies and is not used for additional applica-
tion features. Our results also highlight that different applications
relied on the same advertising providers. Hence, we could create
signatures for these advertising providers and reuse them to mod-
ify the location information for several applications. Our findings
showed that for further iterations of the prototype it might be use-
ful to compile a list for commonly used advertisement providers,
which can be shipped as an initial configuration.

http://mitmproxy.org


������������	
��
���	
�����������

���
��������
���

�������������
���

������������
����

��
���
���
���
����

��
���
� ����
���
�!��

"�#$�$���%���

Figure 3: Usage of location information and applicability of proxy interception

The proxy implementation introduces some overhead to the default
communication workflow and therefore, the location obfuscation
requires additional time. In our test scenario, the additional re-
quired time ranged from 0,1 seconds for simple obfuscation algo-
rithms to 0,5 seconds for more complex ones. This additional over-
head can be neglected in comparison to the time required to locate
the mobile device and therefore it very likely that a user would not
even detect the usage of such a privacy improving proxy.

4.2 Operating system level interception
We based our prototype on the Android Location Privacy Frame-
work (ALPF) [16, 17] and used a Nexus S device to evaluate this
approach. In a first step we ported the existing source code to the
latest stable version of Cyanogenmod (v10.2). In comparison with
our proposed design, the original source code also lacked the fea-
ture of automatic clustering of Android applications. Hence, we
extended the original source code to automatically group applica-
tions based on the category assignment of the Google Play Store
and assign them to appropriate location obfuscation algorithms. In
order to retrieve the category assignment of the Google Play Store
we added a web-scraping component.

4.2.1 Evaluation
We could successfully port the existing ALPF project to the lat-
est version of Cyanogenmod (v10.2). Furthermore we verified that
the automatic category assignment functioned as intended. Our ex-
tended version of ALPF improves the usability of operating system
level interception. Weather applications are for example automati-
cally grouped into an obfuscation class, which removes the detailed
location information but resolves to the same city. Routing applica-
tions are whitelisted in terms of obfuscation and games only obtain
fake location information instead of genuine ones. Upon success-
ful publication we plan to submit our improved version to the ALPF
open source project. The performance evaluation of the operating
system level interceptions yields very similar results as provided by
the ALPF framework [17].

5. DISCUSSION
5.1 Mobile Location Obfuscation Techniques
A number of researchers proposed methods to protect the privacy
of location information with mobile devices. The framework and
TTP approach require developers to incorporate additional func-
tionality in their applications. To the best of our knowledge we are

not aware of any mobile applications, which implemented these ad-
ditional features to protect the location information of their users.
Alternative approaches use a different strategy, namely: location
information is intercepted and modified before it is received by
an application or the third-party application servers. An intercep-
tion at an early stage, for example between the location information
provider and the application requires modifications to the underly-
ing operation system itself. This method has been used successfully
in research but due to the required installation effort is not feasible
for the average user. Another approach consists of the interception
of location information between applications and their third-party
servers. In this scenario a proxy is set up, which intercepts the
communication of mobile application with servers and modifies the
exchanged location information. Compared with system-level in-
terception this approach is easier to set-up by the average user, but
requires significant additional implementation effort. In the current
scenario, the proxy is deployed outside of the mobile device. This
could lead to trust issues. In a further iteration, this proxy could
also be deployed on the mobile device of the user and the rules
are deployed by means of an subscription service. In this scenario,
the user has full control over the proxy component and therefore
the potential trust issues with an external proxy component are re-
solved.

In practice only the proxy approach and the system level intercep-
tion approach are feasible. All other approaches require the cooper-
ation with application developers, who have no intention to reduce
the quality of the available information. The best solution for this
interception problem would be that mobile operating system devel-
opers either provide an API, which can be used to register obfus-
cation algorithms or a graphical user interface, where the user can
configure already implemented algorithms.

5.2 Comparison of different frameworks
Except from theoretical concepts to protect location information on
mobile devices, a number of practical implementations exist. In the
following we discuss solutions for the two most prevalent mobile
operating systems, namely iOS and Android. Hereby, we com-
pare six different solutions: our two implementations (proxy based
and system level interception), Android Location Privacy Frame-
work (ALPF), PDroid, and the default functionalities of iOS 7 and
Android 4.3. Table 1 provides an overview of the different frame-
works.



Pr
ox

y
ba

se
d

in
te

rc
ep

tio
n?

Sy
st

em
le

ve
l i

nt
er

ce
pt

io
n?

A
LP

F

PD
ro

id

IO
S

7

A
nd

ro
id

4.
3

Disable location information provider X X X X X X
Disable location information
for selected applications X X X X X
Spoof location information X X X X
Granular obfuscation X X X
Applicable for all applications X X X X X
No system modification X X X
Clustering of applications X X
Automatic categorization of applications X

Table 1: Comparison of privacy protection frameworks for location information including our two evaluated approaches (?).

One can observe that the latest version of iOS provides more de-
tailed location privacy settings as compared with Android. On An-
droid it is only possible to enable or disable the location provider
for all applications while for iOS it is possible to enable the lo-
cation provider for each application individually. Besides the in-
dividual configuration possibilities, one can also enable or disable
the location provider globally for all applications on iOS. This de-
fault capability is already provided by both operating systems and
no additional system modification is necessary. Besides the two
operating systems, the application PDroid was selected, because it
is representative for several privacy improvement applications for
Android and iOS. PDroid and similar applications provide the ad-
ditional functionality to spoof location information. ALPF in ad-
ditions allows to configure the granularity of location obfuscation.
Both PDroid and ALPF require a modification of the underlying
operating system. Our system level interception prototype extends
ALPF to cluster different applications into categories and by imple-
menting an automatic categorization procedure to categorize newly
installed applications. We expect that the clustering functionality
we introduced improves the overall usability of ALPF significantly.
With the clustering capabilities in place, it is straightforward to up-
date location privacy configuration for a large set of applications
at once instead of updating them for each application one after an-
other. For example, weather applications are clustered and assigned
to a location obfuscation algorithm which provides only the current
city but not the exact location. The last framework in this compari-
son is the proxy based interception approach. The proxy based in-
terception approach provides very similar obfuscation capabilities
as the system level interception approach in terms of categorization
and configuration. Due to the complex categorization procedure,
which requires the definition of new signatures, this prototype does
not provide any automatic category assignment procedures. In ad-
dition our findings show that the modification of location informa-
tion is not applicable to all applications. Some applications used
certificate pinning which made the interception of communication
between the application and its external servers impossible with-
out obtaining root access to the device. The main advantage of
our proxy based prototype however is that it can be deployed to
all modern mobile operating systems. Overall one can observe that
system level interception frameworks currently provide the largest
set of capabilities in terms of usable location privacy protection.

6. CONCLUSION
This paper discusses possible solutions to the research challenge of
protecting the privacy of location information sent to third parties
by mobile applications. We first outlined currently implemented
features of mobile operating systems to limit the extend of transmit-
ted location information as well as suggested solutions from state-
of-the-art research. In the following we developed an improved
software design for two promising location obfuscation methods,
namely proxy-based and system-level interception. Additionally
we evaluated the feasibility of these two previously mentioned ap-
proaches on with an Android based device. Our first prototype ex-
tended the functionality of the Android Location Privacy Frame-
work (ALPF) to provide automatic clustering and category assign-
ment of mobile third-party applications. The second prototype im-
plemented a proxy-based method for location obfuscation and we
evaluated its feasibility based on popular real-world Android appli-
cations. Our findings showed that automated category assignment,
based on an existing knowledge base like the Google Play Store of
Android applications is feasible and furthermore highlighted pos-
sible limitations of proxy-based interception methods. We will re-
lease our prototypes under an the Apache License Version 2.0 to
make our results available to the scientific community upon publi-
cation of our research.
Future research: We plan to extend the functionality of our ob-
fuscation proxy to handle embedded location information such as
EXIF information in pictures. Furthermore, we plan to create a
comprehensive repository of application signatures for the proxy-
based approach in order to detect commonly used third parties,
such as advertising providers, in an automated fashion. Such an
repository will reduced the configuration effort for the proxy based
solution dramatically and makes this privacy preserving approach
feasible for practical use.

Acknowledgments
This research was funded by COMET K1, FFG - Austrian Research
Promotion Agency. Moreover this work has been carried out within
the scope of u’smile, the Josef Ressel Center for User-Friendly Se-
cure Mobile Environments. We gratefully acknowledge funding
and support by the Christian Doppler Gesellschaft, A1 Telekom
Austria AG, Drei-Banken-EDV GmbH, LG Nexera Business Solu-
tions AG and NXP Semiconductors Austria GmbH.



7. REFERENCES
[1] Agarwal, Yuvraj and Hall, Malcolm. ProtectMyPrivacy:

Detecting and Mitigating Privacy Leaks on iOS Devices
Using Crowdsourcing. MobiSys, 2013.

[2] Andersen, Mads Schaarup and Kjærgaard, Mikkel Baun.
Towards a New Classification of Location Privacy Methods
in Pervasive Computing. In Mobile and Ubiquitous Systems:
Computing, Networking, and Services, pages 150–161.
Springer, 2012.

[3] Anderson, Ian and Maitland, Julie and Sherwood, Scott and
Barkhuus, Louise and Chalmers, Matthew and Hall,
Malcolm and Brown, Barry and Muller, Henk. Shakra:
tracking and sharing daily activity levels with unaugmented
mobile phones. Mobile Networks and Applications,
12(2-3):185–199, 2007.

[4] Ardagna, Claudio Agostino and Cremonini, Marco and
Damiani, Ernesto and di Vimercati, S De Capitani and
Samarati, Pierangela. Location privacy protection through
obfuscation-based techniques. In Data and Applications
Security XXI, pages 47–60. Springer, 2007.

[5] Bamba, Bhuvan and Liu, Ling and Pesti, Peter and Wang,
Ting. Supporting anonymous location queries in mobile
environments with privacygrid. In Proceedings of the 17th
international conference on World Wide Web, pages
237–246. ACM, 2008.

[6] Barkhuus, Louise and Dey, Anind K. Location-Based
Services for Mobile Telephony: a Study of Users’ Privacy
Concerns. In INTERACT, volume 3, pages 702–712.
Citeseer, 2003.

[7] Bellavista, Paolo and Corradi, Antonio and Giannelli, Carlo.
Efficiently managing location information with privacy
requirements in wi-fi networks: a middleware approach. In
2nd International Symposium on Wireless Communication
Systems, pages 91–95. IEEE, 2005.

[8] Benisch, Michael and Kelley, Patrick Gage and Sadeh,
Norman and Cranor, Lorrie Faith. Capturing location-privacy
preferences: quantifying accuracy and user-burden tradeoffs.
Personal and Ubiquitous Computing, 15(7):679–694, 2011.

[9] Beresford, Alastair R and Rice, Andrew and Skehin,
Nicholas and Sohan, Ripduman. MockDroid: trading privacy
for application functionality on smartphones. In Proceedings
of the 12th Workshop on Mobile Computing Systems and
Applications. ACM, 2011.

[10] Beresford, Alastair R and Stajano, Frank. Location privacy in
pervasive computing. Pervasive Computing, IEEE, 2(1),
2003.

[11] Brush, AJ and Krumm, John and Scott, James. Exploring end
user preferences for location obfuscation, location-based
services, and the value of location. In Proceedings of the
12th ACM international conference on Ubiquitous
computing, pages 95–104. ACM, 2010.

[12] Damiani, Maria L and Bertino, Elisa and Silvestri, Claudio.
Protecting location privacy through semantics-aware
obfuscation techniques. In Trust Management II. Springer,
2008.

[13] Farrahi, Katayoun and Gatica-Perez, Daniel. Daily routine
classification from mobile phone data. In Machine Learning
for Multimodal Interaction, pages 173–184. Springer, 2008.

[14] Fisher, Drew and Dorner, Leah and Wagner, David. Location
Privacy: User Behavior in the Field. In Proceedings of the
second ACM workshop on Security and privacy in
smartphones and mobile devices, pages 51–56. ACM, 2012.

[15] Gartner. Worldwide smartphone sales in November 2013.
http://www.gartner.com/newsroom/id/2623415,
2013. [Online; accessed 30-November-2013].

[16] Henne, Benjamin. Android Location Privacy - A location
obfuscation framework for Android. http:
//bhenne.github.io/android-location-privacy/.
[Online; accessed 30-November-2013].

[17] Henne, Benjamin and Kater, Christian and Smith, Matthew
and Brenner, Michael. Selective cloaking: Need-to-know for
location-based apps. In Eleventh Annual International
Conference on Privacy, Security and Trust (PST), pages
19–26. IEEE, 2013.

[18] Hong, Jason I and Landay, James A. An architecture for
privacy-sensitive ubiquitous computing. In Proceedings of
the 2nd international conference on Mobile systems,
applications, and services, pages 177–189. ACM, 2004.

[19] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
These aren’t the droids you’re looking for: retrofitting
android to protect data from imperious applications. In
Proceedings of the 18th ACM conference on Computer and
communications security, pages 639–652. ACM, 2011.

[20] Junglas, Iris A and Spitzmuller, Christiane. A research model
for studying privacy concerns pertaining to location-based
services. In Proceedings of the 38th Annual Hawaii
International Conference on System Sciences, pages
180b–180b. IEEE, 2005.

[21] Kaasinen, Eija. User needs for location-aware mobile
services. Personal and ubiquitous computing, 7(1):70–79,
2003.

[22] Kessinger, Kristen and Gellman, Marv. Geolocation Use and
Concerns Survey. Tech. rep. ISACA, 2012.

[23] Krumm, John. Inference attacks on location tracks. In
Pervasive Computing, pages 127–143. Springer, 2007.

[24] Krumm, John. A survey of computational location privacy.
Personal and Ubiquitous Computing, 13(6):391–399, 2009.

[25] Lindqvist, Janne and Cranshaw, Justin and Wiese, Jason and
Hong, Jason and Zimmerman, John. I’m the mayor of my
house: examining why people use foursquare-a social-driven
location sharing application. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages
2409–2418. ACM, 2011.

[26] Minch, Robert P. Privacy issues in location-aware mobile
devices. In Proceedings of the 37th Annual Hawaii
International Conference on System Sciences. IEEE, 2004.

[27] Mokbel, Mohamed F and Chow, Chi-Yin and Aref, Walid G.
The new Casper: query processing for location services
without compromising privacy. In Proceedings of the 32nd
international conference on Very large data bases, pages
763–774. VLDB Endowment, 2006.

[28] P. Samarati. Protecting respondents identities in microdata
release. Knowledge and Data Engineering, IEEE
Transactions on, 13(6):1010–1027, 2001.

[29] Stach, Christoph and Mitschang, Bernhard. Privacy
Management for Mobile Platforms–A Review of Concepts
and Approaches. In 14th International Conference on Mobile
Data Management (MDM), volume 1, pages 305–313. IEEE,
2013.

[30] Wernke, Marius and Skvortsov, Pavel and Dürr, Frank and
Rothermel, Kurt. A classification of location privacy attacks
and approaches. Personal and Ubiquitous Computing, pages
1–13, 2012.

http://www.gartner.com/newsroom/id/2623415
http://bhenne.github.io/android-location-privacy/
http://bhenne.github.io/android-location-privacy/

	Introduction
	Background
	OS-specific approaches
	iOS
	Android

	Generic approaches
	Proxy
	Framework
	Trusted Third Party (TTP)


	Design
	Default Situation
	Proxy-based interception
	Architecture

	Operating system level interception
	Architecture

	Obfuscation of location information

	Evaluation
	Proxy based interception
	Evaluation
	Results

	Operating system level interception
	Evaluation


	Discussion
	Mobile Location Obfuscation Techniques
	Comparison of different frameworks

	Conclusion
	References

