
Function Clone Detection
Evaluation

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Software und Information Engineering

eingereicht von

Burkhard Otwin Hampl
Matrikelnummer 11776165

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Mitwirkung: Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik, BSc

Michael Pucher, BSc

Wien, 24. September 2021
Burkhard Otwin Hampl Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Function Clone Detection
Evaluation

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software and Information Engineering

by

Burkhard Otwin Hampl
Registration Number 11776165

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Assistance: Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik, BSc

Michael Pucher, BSc

Vienna, 24th September, 2021
Burkhard Otwin Hampl Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Burkhard Otwin Hampl

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 24. September 2021
Burkhard Otwin Hampl

v

Danksagung

Ich möchte mich gerne bei der TU Wien und SBA Research für die Möglichkeit und
Hilfe während dieser Arbeit bedanken, insbesondere bei Georg Merzdovnik und Michael
Pucher. Außerdem möchte ich mich bei meiner Familie und meinen Freunden bedanken,
die mich unterstützt und angetrieben hat.

vii

Acknowledgements

I would like to thank the TU Wien and SBA Research for the opportunity and help during
this thesis, especially Georg Merzdovnik and Michael Pucher. Furthermore, thanks to
my family and friends who supported me and kept me going.

ix

Kurzfassung

Beim Reverse Engineering von unbekannten ausführbaren Binärdateien stößt man oft
auf bereits bekannte oder duplizierte Funktionen. Diese Funktionen der unbekannten
Binärdateien sind ähnlich oder gleich zu bekannten Funktionen anderer bekannter Bi-
närdateien. Der Vergleich und die Erkennung dieser kann natürlich nur auf der Ebene
des Assembler-Codes durchgeführt werden, da wir keinen Zugriff auf den ursprünglichen
Quellcode haben, aus dem die Binärdatei kompiliert wurde, was die Erkennung wiederum
schwierig macht, da der Assembler-Code sich oft und stark verändern kann. Mit dem
Aufkommen von Machine Learning wurden viele neue vielversprechende Ansätze zur
Erkennung dieser Funktionsklone veröffentlicht, die die manuelle Arbeit bei der Binär-
analyse erleichtern und beschleunigen. Für viele dieser Ansätze gibt es jedoch keine
öffentlich zugänglichen Implementierungen und sie werden auch nicht von den gängigen
Reverse-Engineering- und Binäranalyse-Tools genutzt.

In dieser Arbeit implementiere und vergleiche ich vier aktuelle Ansätze zur Erkennung
von Funktionsklonen, die aus vielen kürzlich vorgeschlagenen Ansätze ausgewählt wurden,
und implementiere den Besten in Open-Source Software-Tools, sodass er praktisch für
die Reverse Engineering Arbeit eingesetzt werden kann.

xi

Abstract

While reverse engineering unknown binaries, one often finds already known or duplicate
binary functions. These functions from the unknown binaries are similar or equal to
known functions of other known binaries. This comparison and detection can of course
only be done on assembly code level as we do not have access to the original source code
of which the binary was compiled from, which in return makes the detection difficult as
the assembly code can change often and heavily. With the rise of machine learning, many
new promising approaches are published that detect these function clones, which help
and speed up the manual work during binary analysis. But many of these approaches
do not have public available implementations and are not utilized by commonly used
reverse engineering and binary analysis tools.

In this work I implement and compare four state-of-the-art function clone detection
approaches, which are selected out of many recently proposed ones, and implement the
best one in open-source software (OSS) tools, so it can be used practically for reverse
engineering.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Background 3
2.1 Control-flow graphs . 4
2.2 Obfuscation . 6
2.3 Optimization . 7
2.4 Machine learning . 7
2.5 Open-source software tools . 9

3 Related Work 11
3.1 Approaches . 11
3.2 Comparison . 15
3.3 Tools . 15

4 Implementation 19
4.1 Approaches . 19
4.2 Implementation . 21
4.3 Open-source software tools implementation 25

5 Evaluation 29
5.1 Methodology . 29
5.2 Preparation . 29
5.3 Repository . 30
5.4 Results . 31
5.5 Time . 35
5.6 Hyperparameters . 37

6 Conclusion 41

xv

List of Figures 43

List of Tables 45

List of Listings 47

Acronyms 49

Bibliography 53

CHAPTER 1
Introduction

When developing software, one usually does not start from zero, often it involves copying
and reusing code from other projects and other places like the internet.[18, 46] In the end,
however, all code is executed on the same computer hardware and results in the same
behavior or outcome. Because of this we can, via the low level assembly language, detect
similarities and code/function clones. The three main goals of function clone detection
are:

• To identify functions or function behavior of functions from a repository in unknown
binaries. This is used to filter out and name known functions out of the functions
from unknown binaries and to quickly see the purpose of an unknown function,
which makes reverse engineering faster and easier. An additional goal would be
to be able to search if a binary contains a specific function, which would make it
possible to identify vulnerabilities directly from the assembly code.

• To identify same or very similar (with minimal difference) methods in the same
binary. This is used to detect function clones that were generated by simply copy
& paste or as an obfuscation method.

• To create “searchable” representations of functions, called embeddings, which can
be stored and compared easier than the original representation. The difficulty is to
create embeddings that are both representative of the original function and fast to
search trough/compare.

The challenge is, not only to detect simple assembly clones that are almost one-to-one
the same, but also to find the similarities over different computer architectures and
obfuscation methods, that make it hard to find these clones. To do this, we not only
need to match the syntax (the assembly code) itself, but also extract the semantic

1

1. Introduction

meaning of functions, their dependencies and the critical patterns, that are also used by
an experienced reverse engineer, who does the process manually.

There are many different approaches that try to solve this problem with varying success.
The big problem is the public availability of implementations of the suggested algorithms
and therefore the wide adoption.[20] While some approaches have implementations
publicly available, they are not implemented in widely used (OSS) tools or there are
no, that I know of, plugins for the tools that implement the suggested approaches. The
result is, that they are not used in the day-to-day workflows of binary analysts. Another
problem with most of the implementations, that are provided by existing research, is
that they are not maintained and stopped working on current up-to-date systems.

The goal of this thesis is to find the best state-of-the-art function clone detection approach,
out of a selection of recent work. This method will then be used to build plugins for
interaction with OSS tools, so that they can be integrated into the binary analysis
workflow. To do this, first, function clone detection approaches of the last few years are
searched and an overview is obtained. After that the most promising approaches are
selected and implemented. In the end they are evaluated and the best one is integrated
with the OSS tools.

2

CHAPTER 2
Background

Computer programs are usually written in high-level programming languages that are
compiled and assembled or interpreted into a low-level assembly language which the
central processing unit (CPU) can understand and execute. With different architectures
come different assembly languages that produce different instructions from the same
original source code.[24, 70] Additionally, different compilers and compilation settings
vary the outputted assembly instructions under certain circumstances quite a lot.[34]
The human-readable representation of these assembly instructions are abbreviated or
displayed as so-called mnemonics, which for instance represent the addition as add or
the memory move instruction as mov. These instructions can have from zero up to
three operands which indicate registers, memory locations or constants, where some
architectures support more instructions than others.[24, 39] But because programs consist
of more than a simple juxtaposition of instructions, CPUs and their assembly languages
also support control structures like conditional and unconditional jumps/branches. With
them control structures like if statements and loops can be represented.[70] An example

int even_odd(int num) {
int odd = num % 2;
if(odd == 0) {

printf("%d is even.\n", num);
} else {

printf("%d is odd.\n", num);
}
return odd;

}

Listing 1: C code of a simple functions that displays if a number is even or odd and
returns 0 or 1 accordingly.

3

2. Background

<even_odd>:
push %rbp
mov %rsp,%rbp
sub $0x20,%rsp
mov %edi,-0x14(%rbp)
mov -0x14(%rbp),%eax
cltd
shr $0x1f,%edx
add %edx,%eax
and $0x1,%eax
sub %edx,%eax
mov %eax,-0x4(%rbp)
cmpl $0x0,-0x4(%rbp)
jne <even_odd+0x3d>
mov -0x14(%rbp),%eax
mov %eax,%esi
lea 0xe7d(%rip),%rax # "%d is even.\n"
mov %rax,%rdi
mov $0x0,%eax
call <printf@plt>
jmp <even_odd+0x56>
mov -0x14(%rbp),%eax
mov %eax,%esi
lea 0xe6f(%rip),%rax # "%d is odd.\n"
mov %rax,%rdi
mov $0x0,%eax
call <printf@plt>
mov -0x4(%rbp),%eax
leave
ret

Listing 2: The assembly code outputted from the objdump utility of the Listing 1 compiled
as a x86–64 binary.

of such a translation can be found in Listing 1 and Listing 2, where the second is a direct
result of the compilation process of the first.

2.1 Control-flow graphs

However, this brings problems, since there are now multiple paths instructions can be
executed in and that can drastically change the behavior of the running program. To
represent these flows a control-flow graph (CFG) is used, which is a directed graph that is
constructed from an assembly function/procedure. The nodes (or vertices) of this graph
are the basic blocks, that are the consecutive assembly instructions that are not branch,
call or return instructions and the edges are these control flow transitions between basic
blocks.[42, 77] One such CFG can be found in Figure 2.1, which has five basic blocks (the
nodes with the round corners that are titled by their address and offset of the function

4

2.1. Control-flow graphs

0x0007d4 (0x0007d4) even_odd

0x000007d4: stp x29, x30, [sp, #-0x30]!
0x000007d8: mov x29, sp
0x000007dc: str w0, [sp, #0x1c]
0x000007e0: ldr w0, [sp, #0x1c]
0x000007e4: cmp w0, #0
0x000007e8: and w0, w0, #1
0x000007ec: cneg w0, w0, lt
0x000007f0: str w0, [sp, #0x2c]
0x000007f4: ldr w0, [sp, #0x2c]
0x000007f8: cmp w0, #0
0x000007fc: b.ne #0x814

0x000800 (0x0007d4) even_odd+0x2c

0x00000800: ldr w1, [sp, #0x1c]
0x00000804: adrp x0, #0
0x00000808: add x0, x0, #0x910
0x0000080c: bl #0x6a0

0x000814 (0x0007d4) even_odd+0x40

0x00000814: ldr w1, [sp, #0x1c]
0x00000818: adrp x0, #0
0x0000081c: add x0, x0, #0x920
0x00000820: bl #0x6a0

0x000810 (0x0007d4) even_odd+0x3c

0x00000810: b #0x824

0x000824 (0x0007d4) even_odd+0x50

0x00000824: ldr w0, [sp, #0x2c]
0x00000828: ldp x29, x30, [sp], #0x30
0x0000082c: ret

Figure 2.1: The code from Listing 1 compiled as AArch64 binary displayed as CFG. It
has five basic blocks, two function calls and no loops.

start), that are split by the different branches of the if statement, indicated by the three
solid lines, two function calls, indicated by the two dashed lines, and has no loops, as
there are no directed cycles in the graph. To generate these CFGs one needs to detect
the functions in binaries. This is not a simple task, as functions, which are defined at
source code level, can be hard to detect in a binary.[6, 7] This is however not subject of
this thesis as this would happen before a function clone analysis.

Every function can have multiple callers and callees, where the callers are all the functions
that call a particular function and the callees are all the functions a certain function calls.
These can also be visualised by a call graph, that is similar to a CFG but on function level,
meaning the nodes are functions and the edges are calls. Compilers sometimes inline

5

2. Background

callees, meaning they copy the code from the callee and replace the call in the caller, to
improve performance of the binary, as function calls can be expensive operations. This
will change the CFG and the involved basic blocks, and therefore must be taken into
consideration when searching for function clones.[46]

An extension to CFGs are attributed control-flow graphs (ACFGs), where each CFG
node is labeled with attributes.[76] Because CFGs are generated from the basic blocks of
each function they capture only information about one function each. A graph that stores
basic block information over multiple functions is called inter-procedural control-flow
graph (ICFG), which is the combination of a CFG and call graph.[19] One related type of
graph is the data flow graph (DFG), which instead of tracking control flow transfers on
the edges, tracks the data flow. Meaning it stores and displays information on the edges
of which variable/register/memory address/etc. is used by the connected vertices.[30]

Because the CPU executes a concrete path of the CFG, one can use random walks to
serialize the CFG. Here random paths are selected, meaning starting from a basic block,
that can also be randomly selected or deterministic, an edge is selected that is connected
to that basic block and the connecting basic block is now our new starting basic block.
This process is repeated until either there is no new basic block/edge discoverable or
until a specific (path) length is reached. One can generate multiple random walks to get
different execution sequences.[19, 18, 4]

2.2 Obfuscation

It is not easy to recognise known/familiar source code functions or vulnerabilities in
compiled and assembled binaries even if the original source code is available, mainly
because of the many variables that influence the compile process. This is why we want
to find similarities between different compiled functions that originate from the same or
very similar source code.[64] To make this step harder one can use obfuscation methods
that make it so simple logic looks complex or that it is not simple to understand a
function’s purpose and how/why it is called/used. There are obfuscation techniques like
control flow flattening (FLA) and bogus control flow (BCF) that can change the CFG
significantly. BCF splits basic blocks apart and adds random branches and basic blocks.
FLA introduces a new basic block that consists out of a switch statement, which aims
to make a simple basic block chain more complex. The CFG and the remaining basic
blocks are changed so that they now all lead to this select basic block, the resulting CFG
is now flat and the basic blocks are changed to include a state variable which is used by
the switch statement.[75, 38, 18]

An additional obfuscation method is instruction substitution (SUB), which replaces in-
structions with more complex logically equivalent ones and possibly adds new constants.[18,
75] Furthermore, function clones themselves can be used as an obfuscation method. This
is done to disguise multiple calls to the same function as different function calls and to
introduce fake dependencies.[56, 40]

6

2.3. Optimization

2.3 Optimization

Compilers usually have different binary output depending on the compilation settings,
some of these settings depend on the optimization level that is used. These compiler
optimization levels determine what and how much the resulting binary is optimized.
Generally a binary can be optimized for speed or size, which has different effects on
what type of optimizations are applied. These optimization techniques include memory
alignment, dead code elimination and loop unrolling. All of these things can, under
certain circumstances, heavily change the resulting binary and therefore also things like
the CFG. The particular optimization types heavily depend on the optimization level as
higher levels apply more optimizations and usually include optimizations from previous
levels.[12, 19, 6, 58]

A different compiler setting that affects a binary reverse engineer’s efforts is binary
stripping. Here function names, debug symbols and other source-level information is
removed. This is done to decrease the file size of the resulting binaries, but also makes it
harder to reverse engineer.[57] Another setting is to produce statically linked binaries,
which combines the binary and all its libraries, that are normally dynamically loaded,
into one huge binary, which can prevent library version mismatch. This combined with
stripped binaries makes it hard to quickly identify and understand binaries, as now even
common library functions, that are named and known under a non-static context, are
now unnamed and unknown.[6]

It does not even have to be an obfuscation method that modifies the compiled code
or the CFG. To speed up a function/program, the compiler can for example decide to
inline function calls, as mentioned before. Now, to match these different CFGs, some
approaches mimic the compiler’s behavior and merge CFGs manually.[10] Additionally,
because of different compilers and compiler settings, the same code sequences can result
in almost identical assembly code that only differs in its registers or memory references.
To handle these cases, one can normalize the instructions by generalizing the memory
locations, registers and constants by replacing them with general constants/references
that are the same for all kinds. For example, a constant is replaced by the literal C or
a memory location by MEM. There are many levels on which these generalizations can
happen, therefore also on registers.[4, 26, 11]

2.4 Machine learning

In the last few years artificial intelligence (AI) and machine learning (ML) gained massive
traction and therefore can also be found in the field of binary function clone detection.
Even though the field of AI is very broad, the subfield of ML is particularly interesting for
clone detection. The different ML approaches and algorithms have a common structure
in that they first extract features from the function of a target binary to be analysed and
use that information to train a machine learning algorithm, so that it will “remember”
the function and recall it correctly in the future. When a new function is analysed now

7

2. Background

and fed into the trained ML model, it will return how similar they are.[77]

2.4.1 Neural networks

To make that possible one can use artificial neural networks (ANNs), often just called
neural networks (NNs), that try to simulate some of the learning processes of the human
brain. A typical NN consists out of nodes/units/neurons that are connected by directed
edges/links. The links are weighted and the units have so called activation functions that
act on the inputs and produce outputs. Usually, the units are arranged in layers where
each unit in a layer only gets input from units from the previous layer.[66] There are
typically three types of layers: input, output and hidden, where the input layer receives
the input, the output layer generates the output and the hidden layer(s) can be used
to store data.[44, 77] One type of NN is the recurrent neural network (RNN), where
the output of a unit is fed back into its input.[66] A deep neural network (DNN) is a
more complex NN that has a large number of hidden layers.[77, 44] Another special kind
of NN, that was original designed for handling image classification, is a convolutional
neural network (CNN), which is designed to handle data that has a known, grid-like
topology.[45, 32] While a multilayer perceptron (MLP) also has multiple layers, it is
different from a CNN in that it has non-linear activation functions and can therefore
handle not linearly separable data.[32, 77]

2.4.2 Natural language processing

Due to the changing output of the same compiled source code, it is hard to search
for function clones only on syntactical basis. This is why the focus shifted away from
matching syntactical to semantic similarities. One technique, that extracts the semantic
meaning from text of different languages, can be borrowed from the field of natural
language processing (NLP).[64, 80, 65] While it does not seem like the field of NLP
and the analysis of binary code have much in common, on a second look one can see
that both want to accomplish similar goals.[80] NLP uses so-called word embeddings,
which are (multidimensional) vectors, to encode the semantics of words.[65, 64] The usual
pattern for applying this technique on binaries is to interpret an assembly instruction
as a word, which is why they are also often called instruction embeddings (analogous to
word embeddings), and a basic block as sentence.[34, 64] Functions can not be simply
represented as sentences because they can be executed in many different ways.[65] To
work around this, for example, random walks can be used, as they transform the graph
to one or more sequential path. A popular choice to generate word embeddings is the
word2vec model. To use the words around a target word as context, one can use the
continuous bag-of-words (CBOW) [49] method of word2vec.[19] It has an input layer
where the surrounding words are fed into a projection layer that averages all words and an
output layer that predicts the target word. An approach that can also be used to obtain
embeddings is Bidirectional Encoder Representations from Transformers (BERT) [16]
which features model pre-training and incorporates the context of words. Pre-training

8

2.5. Open-source software tools

is a method of not using random initial values but instead getting the values from the
training dataset directly, which improves the general performance of many models.[14]

2.5 Open-source software tools
To make the life of binary reverse engineering easier, there are tools that perform the
disassembling step and basic analysis on top. While there is commercial off-the-shelf
(COTS) software available that does the job, the focus of this work is on OSS tools. This
is because everyone has access to them and generally the tutorial and plugin/contribution
ecosystem is better.

2.5.1 Ghidra

Ghidra [53] is an open-source software reverse engineering (SRE) framework, which is
developed by the National Security Agency (NSA) of the United States of America. While
Ghidra provides many different tools, the main features are the included disassembler
and decompiler, which try to reconstruct the C code from the assembly. The decompiler
makes it very easy to pick up and accessible even for reverse engineering novices.[23]

2.5.2 Radare2

Radare2 [60] (short r2) is also an open-source reverse engineering framework. The
framework consists out of many different command-line interface (CLI) utilities, where
the main tool is the radare2 executable. It offers a disassembler, debugger, binary patcher,
analyzer and visualizer. The biggest disadvantage and the reason that hinders wide
adoption is the steep learning curve, as the CLI is not very intuitive and needs time to
get used to.[47]

9

CHAPTER 3
Related Work

In last few years the amount of research into the field of binary code similarity and
function clone detection increased greatly.[34] With the rise of AI and ML, it also became
popular among binary code analysis approaches.[77] This is why I looked mostly into
approaches leveraging ML.

3.1 Approaches
There are different types of approaches to tackle the function clone detection problem,
some are ML based or NLP based, others are for instance pure CFG based. NLP is also
a subfield of AI and makes use of embeddings.[34]

3.1.1 Zeek

Zeek [67] uses the self developed algorithm proc2vec to transform instructions to vectors
which then are fed into a NN. Proc2vec splits the basic blocks into so-called strands, the
instructions needed to calculate a particular variable, where each instruction in a basic
block can be used in multiple strands, and uses a MD5 hash of the textual representation
of the strands to generate an index for the output vector. The NN consists out of 4 layers,
takes two vectors (the functions to compare) and outputs the similarity as probability.

According to the authors the implementation is faster than GitZ [15] and also outperforms
it in terms of accuracy. Sadly it is only compared to GitZ and has no public implementation
available.

3.1.2 InnerEye

InnerEye [80] is based on neural machine translation (NMT) and uses long short-term
memory (LSTM) (a type of RNN) to convert basic blocks into embeddings, that are

11

3. Related Work

stored in a locality-sensitive hashing (LSH) database. Additionally, a longest common
subsequence (LCS) algorithm on paths of the CFG is used to find code that is contained
in other code from a different architecture.[34]

The evaluation dataset has many functions/basic blocks (1.2 million) and their results
show good accuracy and efficiency, compared to symbolic execution.[34] But for each
assembly language, it needs its own separate model and it is only evaluated against a
support vector machine (SVM) classifier that uses the same basic block attributes as
Gemini [76], so not a real comparison against the full approach.[64] There is also no
information given on what LSH algorithm is used.[34] They (partially) released their
datasets, models and code1.[34, 65]

3.1.3 RLZ18

In this work [65] an approach is suggested that uses a word2vec CBOW model and clusters
similar instructions, even across architectures. Meaning the instruction embeddings are
clustered by their semantic across the same and other architectures.[13, 34]

While they use the same dataset as InnerEye [80], they do not use the same amount of
functions (only 200 thousands). Their evaluation models and code was published2.[34]

3.1.4 Gemini

Gemini [76] uses the extracted ACFG to train a graph embedding DNN. To build the
ACFG they manually select two inter-block and six block-level features/attributes that
include the number of instruction and calls or different constants. After transforming the
information into vectors a LSH based hash table is used for fast lookup and similarity
comparison.[34, 48]

While the approach has a rather large dataset (over 420 million functions) and outperforms
both Genius [28] and a bipartite graph matching (BGM) algorithm regarding accuracy
and performance, the used LSH algorithm is not disclosed. The evaluation sources are
publicly available3.[34, 48]

3.1.5 DeepBinDiff

DeepBinDiff [19] begins by generating an ICFG and feature vectors, where the vectors are
produced from random walks of ICFG via a word2vec CBOW model. The result of this
is then used to generate graph embeddings with the text-associated DeepWalk (TADW)
graph learning technique. Then it uses a k-hop greedy algorithm to compare the graphs
and the basic blocks.

1https://nmt4binaries.github.io/ (last accessed 30th July 2021)
2https://github.com/nlp-code-analysis/cross-arch-instr-model (last accessed 30th

July 2021)
3https://github.com/xiaojunxu/dnn-binary-code-similarity (last accessed 30th July

2021)

12

https://nmt4binaries.github.io/
https://github.com/nlp-code-analysis/cross-arch-instr-model
https://github.com/xiaojunxu/dnn-binary-code-similarity

3.1. Approaches

This outperforms Asm2Vec [18] and was tested against a few binaries in many different
versions and optimization levels, but not across architectures. It is susceptible to
optimization/obfuscation that heavily changes the CFG and no evaluation is done with
obfuscation techniques. The source code is available online4.

3.1.6 YCT+20

This approach [78] processes the CFG in two ways. First it uses BERT [16] to extract
semantic information by pre-training the block and token embeddings. The result of
this is then fed into a message passing neural networks (MPNN) [31], which is a graph
prediction framework original developed for the chemistry field and here used to extract
the structure of the CFG, where the graph embeddings are calculated. The second way
to process the CFG is to learn the order of the graph nodes by passing it through a CNN.
The result of both ways is then concatenated and transformed by a MLP to get the final
vector that can be used for comparison.[31]

The proposed model is compared against and outperforms Gemini [76], Word2Vec [50],
and BERT [16]. It should also work cross-compiler, but they do not evaluate against it,
furthermore they do not measure and compare training or run time. The implementation
and dataset is not publicly accessible.

3.1.7 BinGo

BinGo [10] uses the CFG to select and inline some functions, which can also be library
functions, via a recursive algorithm. To reduce the search space a filtering algorithm is
utilised that selects the functions that are the most similar to the target (here called
signature) function. For the selected functions partial traces, code sequences that are
generated out of the CFG (comparable with random walks with random start nodes), are
generated and the one that are to compiler specific or “infeasible to reach” are eliminated
again immediately. To now extract the semantic information of the traces, states that
are true before and after the execution of these traces are defined. These are then solved
by generating random input/output (I/O) samples and solving the symbolic expressions.
The result of this is then used to generate a similarity score between the current and
target function.

This approach outperforms other binary matching tools and was successful used for bug
hunting in closed source COTS binaries, where it also was relative fast, in that it can find
candidates in under 100 milliseconds for small and under 100 seconds for large (> 5000
functions) binaries. But when compared to approaches that work on assembly level it
performs worse, because the random sampling can misidentify samples.[18] It also does
not perform well when changing optimization or other compilation settings and the used
intermediate representation (REIL [21]) is limited.[75] There is no public implementation
available.

4https://github.com/yueduan/DeepBinDiff (last accessed 30th July 2021)

13

https://github.com/yueduan/DeepBinDiff

3. Related Work

3.1.8 BinSequence

BinSequence [39] works by disassembling the binaries and normalizing the operands of
instructions, meaning addresses and registers are replaced with constants while constants
stay the same. These normalized instructions are then compared via a self-developed
algorithm that returns a similarity score, which is calculated by comparing the mnemonics
and operands. This is then used in combination with a LCS algorithm that returns
the similarity score between two basic blocks. After that the longest path of the CFG
is found and a similarity score between the target function and the current function
is calculated, which is also based on the basic block one. To improve the result a
neighborhood expansion algorithm is used that expands certain neighborhoods that have
similar characteristics. In order to reduce the set of matching functions, the functions
are filtered before they are matched with the target function. There are two metrics for
that, similar number of basic blocks and similar fingerprint of the normalized function
content, both defined by thresholds.

The proposed approach outperforms a few other similar tools in terms of accuracy and
performance. While they also test against obfuscation they do not compare the results
against other approaches. It also can not deal with FLA and some compiler optimizations
without other software and can produce false positives rather easily, because thresholds
have to be defined manually. Additionally, it also runs only on Microsoft Windows and
the implementation is not publicly available.[34]

3.1.9 BinSign

BinSign [55] is a fingerprint based approach. To generate the fingerprint of a function the
CFG is taken and partial traces, here called tracelets, with two basic blocks are generated.
The tracelets are then used to extract block-level features like the number of constants or
function calls. Additionally, a hash is calculated via the min-hashing [5] technique from
the normalized instructions which is later used to find matching candidates via LSH and
the number of basic blocks. To rank different candidates both the tracelets and global
features like the number of arguments or tracelets are used.

The approach is scalable/distributed across many machines and tested against obfuscation
and different compiler optimizations. But it only runs on Microsoft Windows and can
not identify functions when they are obfuscated with FLA or BCF. There is no open
source implementation available.[34]

3.1.10 FOSSIL

FOSSIL [4] begins by normalizing instruction, i.e. replacing memory references and
constants with fixed values and removing concrete register information. Then, the
opcodes are extracted and an opcode frequency distribution is calculated. Additionally,
the CFG is used to generate random walk sequences. The opcodes and opcode frequencies
are then put into a hidden Markov model (HMM) [72] which scores and classifies the

14

3.2. Comparison

functions based on the opcodes of the function. To compare the CFGs of the current
and target function the generated random walks are fed into a hash subgraph pairwise
(HSP) [79] method. When the two previous metrics do not match a third is applied, which
compares the z-score of the opcode frequency distribution. All of them are combined into
a Bayesian network (BN) model, which is based on statistics and models the dependencies
between the different outputs, that improves the efficiency.

It is tested against simple obfuscation techniques and with a real malware dataset. It is
also evaluated against and outperforms, among others, BinClone [25] and Fast Library
Identification and Recognition Technology (FLIRT) [35]. Though it does not work cross-
architecture and does not detect or handle function inlining. There is no open source
implementation available.[34]

3.2 Comparison

To get a better overview of the different approaches, I compiled Table 3.1, which is
inspired by a survey [34]. The common metrics of the approaches from both section 3.1
and section 4.1 are included in the table. The common criteria include the evaluation
methodology, the target/implementation architecture and the number of comparisons to
other research. For the cross-compiler methodology only different compiler implementa-
tion are counted, i.e. only using different versions of the same compiler do not count as
cross-compiler approaches.

3.3 Tools

There are many different binary analysis tools, both COTS and OSS. Widely used ones
are Hex-Rays Interactive Disassembler Professional [37] (short IDA Pro or simply IDA),
Ghidra from the NSA, radare2 and Binary Ninja [73] developed by Vector 35.[22, 3]
They differ in their supported CPU architectures and features, where all of them have
built-in disassemblers and some have decompilers. Some of these binary analysis tools
also implement functionality to find and detect known or duplicate functions.

3.3.1 IDA FLIRT

Hex-Rays IDA FLIRT or F.L.I.R.T. [35] is the function recognition technology by IDA,
a commercial disassembler. It is a signature-based algorithm that is used to match
standard C/C++ library functions, that works by extracting the first 32 bytes of the
compiled function plus the cyclic redundancy check (CRC) sum of the rest of the bytes
of the function. To accommodate byte variation between different compile and linking
processes FLIRT supports byte wildcards, that ignore these particular changing bytes.
The process of generating the signature database limited and the databases need constant
updating, to stay up-to-date with the newest versions of the binaries.[36, 22, 74, 55, 4]

15

3. Related Work

Approach Year Architecture Methodology

x8
6(
–6

4)

A
R
M
/A

A
rc
h6

4

M
IP

S(
32

/6
4)

C
ro
ss
-a
rc
hi
te
ct
ur
e

C
ro
ss
-c
om

pi
le
r

C
ro
ss
-o
pt
im

iz
at
io
n

O
bf
us
ca
ti
on

N
o.

of
co
m
pa

ri
so
ns

BinGo [10] 2016 3 3 7 3 3 3 7 4
Gemini [76] 2017 3 3 3 3 7 3 7 2

BinSequence [39] 2017 3 7 7 7 7 7 7 4
BinSign [55] 2017 3 7 7 7 7 3 3 2
Zeek [67] 2018 3 3 7 3 3 3 7 1

VulSeeker [30] 2018 3 3 3 3 7 3 7 1
FOSSIL [4] 2018 3 7 7 7 7 7 3 7
RLZ18 [65] 2018 3 3 7 3 7 3 7 0

Asm2Vec [18] 2019 3 7 7 7 3 3 3 12
InnerEye [80] 2019 3 3 7 3 7 3 7 0
GeneDiff [46] 2019 3 3 3 3 7 3 7 4
SAFE [48] 2019 3 3 7 3 3 3 7 1

DeepBinDiff [19] 2020 3 7 7 7 7 3 7 3
YCT+20 [78] 2020 3 3 7 3 7 3 7 7

Table 3.1: Table of comparison between different approaches. This table also includes
the chosen approaches from section 4.1.[34]

3.3.2 Radare2 Zignatures

In addition to using FLIRT signature files, radare2 uses its own signature format called
zignatures which is saved as string database (SDB) [63]. It is comparable to FLIRT
as it can also store a byte pattern and bite masks. But it supports more options like
graph metrics, function references, basic block hashes or variables as can be seen in the
signatures generated in Listing 3.[33, 62] These two signatures are from two functions,
which were compiled from the same source code, and while many signature values are
the same, they do differ in their byte mask, variables, types and hashes.

3.3.3 Ghidra FunctionID

Ghidra also uses a similar function identification approach called Function ID (short
FID) to FLIRT. It uses two 64-bit hashes, the full and specific hash, of the instructions of
the function, where the specific hash also includes a constant operand, based on whether
a heuristic classifies it as address or not. This allows accommodation of changes that are

16

3.3. Tools

sym.even_odd_x86-64:
bytes: 554889e54883ec20897dec8b45ec99c1ea1f01d083e00129d08945fc837dfc0075 c

1b8b45ec89c6488d057d0e00004889c7b800000000e8acfeffffeb198b45ec89c6488 c
d056f0e00004889c7b800000000e891feffff8b45fcc9c3

↪→
↪→
mask: ff0 c

0ffffffffffff000000000000ffffffffffffffffff00000000ff00ffffffffffff00 c
0000000000ffffffffffffffffff00000000ffffffffff

↪→
↪→
graph: cc=2 nbbs=4 edges=4 ebbs=1 bbsum=91
addr: 0x00001159
refs: sym.imp.printf, sym.imp.printf
vars: b-28, b-12, r110, r119
types: func.sym.even_odd.args=2, func.sym.even_odd.arg.0="int64_t,arg1",

func.sym.even_odd.arg.1="int64_t,arg3"↪→
bbhash: 698b018c76f82adf954ce575a0ab6213a58f2bdd5737839f333a38e9e1f5325d

sym.even_odd_aarch64:
bytes: fd7bbda9fd030091e01f00b9e01f40b91f0000710000001200a4805ae02f00b9e0 c

2f40b91f000071c1000054e11f40b90000009000402491a5ffff9705000014e11f40b c
90000009000802491a0ffff97e02f40b9fd7bc3a8c0035fd6

↪→
↪→
mask: fff c

fff c
ff

↪→
↪→
graph: cc=2 nbbs=4 edges=4 ebbs=1 bbsum=92
addr: 0x000007d4
refs: sym.imp.printf, sym.imp.printf
vars: s28, s44, r74
types: func.sym.even_odd.args=3, func.sym.even_odd.arg.0="int64_t,arg1",

func.sym.even_odd.arg.1="int64_t,arg_1ch",
func.sym.even_odd.arg.2="int64_t,arg_2ch"

↪→
↪→
bbhash: ef744d293556eb96f3fdfb3ea7aad0fc4ed5ecf71314a0b0fa5e03c6a99489e9

Listing 3: Zignatures that are generated from the x86-64 and AArch64 compiled binaries
from Listing 1.

introduced during the linking process, while still being able to tell different versions of a
function apart. In addition to the hashes, caller and callee are considered when matching
functions, however it does not support wildcards.[1, 52, 3, 23]

17

CHAPTER 4
Implementation

With the different approaches and research directions in mind, this chapter picks a number
of promising candidates. This selection is then implemented and the most promising
approach of the evaluation in chapter 5 is picked and implemented in the OSS tools.

4.1 Approaches
After reviewing all the approaches in chapter 3 and additionally comparing them in
section 3.2, I picked four different approach. The main reasons for this choice were
missing comparisons against each other and good performance when compared to previous
approaches. Reference implementations of the approaches, when available, are adapted
for the purpose of this work.

4.1.1 Asm2Vec

Asm2Vec [18] is a vector based approach, which measures the similarities of functions via
the distance between their vector representation. Based on Paragraph Vector-Distributed
Memory (PV-DM) [43], which is an extension to the original word2vec NLP model, a new
model named Asm2Vec is proposed, that learns the semantic relationship of instructions
within their surrounding context. To do that it extracts the CFG and applies selective
callee expansion, to handle function inlining. The resulting graph is then used to generate
random walks which are used as input for the training of the proposed model. The
resulting vector is stored and used to compare to new function embeddings that are
generated from the trained model via cosine similarity.

According to the authors and other research it can handle compiler optimizations and
obfuscation. It also has high accuracy, does not require prior knowledge, meaning it does
not use manually selected features, and is compared to many other approaches.[19, 46, 34]
But it is designed only for a single architecture and can not handle dynamic jumps. An

19

4. Implementation

implementation of the authors can be found online1, there is also an unofficial Python
implementation [51] available.

This approach was chosen because it is recent, looks promising and has many different
evaluations. Additionally, it is often cited and compared by newer approaches, providing
good baseline evaluation results.

4.1.2 GeneDiff

GeneDiff [46] is another NLP approach based on PV-DM. It consists out of three
components that are called one after the other. The first one is the preprocessor stage that
extracts some information/metadata from the binary and converts the binary instructions
into the intermediate representation (IR), an architecture independent representation,
of Valgrind [54]. It is called VEX and GeneDiff makes use of a particular Python
implementation that is called PyVEX [68]. To reduce the number of low-frequency words
introduced in this step, constants and strings are replaced by common tags. The second
component is the Semantic Representation Model, that also includes the model training.
In order to mitigate function inlining introduced by the compiler, GeneDiff first has to
perform callee expansion to expand function calls. After that a path generation algorithm,
that has the same goal as the random walks of Asm2Vec [18], is proposed that creates
multiple paths out of the CFG of a function. The resulting paths are then used in the
training process, which transforms them into embeddings. The last component is the
Detection Model that is used to find similar functions from the previous learned functions
via cosine distance.

This approach works cross-architecture via an IR, meaning it can also be applied to many
different architectures. The authors claim the approach is both accurate and fast, and
they also test it by searching real vulnerabilities in firmware images. But they do not
evaluate against obfuscation and only compare to a limited number of approaches. There
is no public implementation available.

GeneDiff was chosen because it uses an IR to achieve architecture independence and
handles different special cases, like function inlining.

4.1.3 SAFE

SAFE [48] stands for Self-Attentive Function Embeddings and consists out of two phases.
In phase one each instruction of a function is transformed into a word embedding
via word2vec. To reduce the amount of different instructions, memory addresses and
big constants (absolute value > 5000) are replaced by special symbols and functions
are truncated to a fixed maximum length (150 instructions). In the second phase the
instructions vectors of a function are combined into one by a custom NN. More precisely
this Self-Attentive Network is a RNN, and the output is used to calculate the similarity
of two function vectors measured by the cosine similarity.

1https://github.com/McGill-DMaS/Kam1n0-Community (last accessed 30th July 2021)

20

https://github.com/McGill-DMaS/Kam1n0-Community

4.2. Implementation

The approach is more accurate and faster (up to ten times) than what they compare it to
(Gemini [76]). A large amount of instructions is needed for training the word embeddings
of the first stage. Furthermore, it is only compared to the one approach and is not tested
against obfuscation. The source code [17] is publicly available.

The main reason why SAFE was chosen is that it is a recent cross-architecture approach,
that outperforms Gemini and its source code is publicly available.

4.1.4 VulSeeker

VulSeeker [30] is an ML based approach with its primary purpose being vulnerability
search in binaries, that can also be applied for binary clone detection. It works by
generating a labeled semantic flow graph (LSFG), a CFG graph where each edge is
marked with either ones or zeros depending on whether the connected basic blocks
accesses the same data or not, which is constructed out of the CFG and DFG, of the
target function. After that eight features, the number of instructions of different groups
like stack (push) or algorithm (add) instructions, are extracted from the basic blocks
and captured in a numerical vector. Next, an embedding is generated from the vectors of
the function via a DNN model. The resulting vector is then compared via cosine distance
with the vector of functions in the database/repository.

VulSeeker supports different architectures and is evaluated in a vulnerability search
context. It also outperforms Gemini [76] in terms of accuracy while maintaining similar
time cost, but other approaches are not evaluated.[34] The source code [29] is publicly
available.

The reason why this approach is in the selection, is because it is architecture agnostic,
shows good results and has a reference implementation available. Because it is only
evaluated against one approach, I wanted to see how it performs against the others.

4.2 Implementation

Because all the available implementations are written in Python, the implementations
for this thesis also make use of Python 3, in order to reuse code and stay close to the
original implementations. To make the training and evaluation part easier I adapted all
implementations to use angr [69] for binary disassembling and CFG building. To get
better debugging output, logging was also added and used instead of print and to make
the implementations faster, optional concurrency was implemented that takes advantages
from many CPU cores.

In order to manage the different Python dependencies of the implementations better
Pipenv [59] is used. This makes it easy to get consistent and reliable Python package
versions within the different implementations, as the default python tools do not offer
a reproducible way to install dependencies for specific projects, and it offers a uniform
interface which can be used to call the different implementation from external tools.

21

4. Implementation

When parameter values in the implementation would differ from the one in the papers, I
would replicate the one used in their respective papers when ever possible. The following
sections explain the changes that were made and problems that occurred during the
implementation and adaptation of the different approaches.

4.2.1 Asm2Vec

After using the unofficial Python implementation to get started, I adapted it by adding
missing features, the selective callee expansion, which mirrors the parameters and the
algorithm described in the paper. The Python implementation did not provide a way
to read and extract executable binaries, only assembly source files. To fix that I added
angr, which takes care of disassembling and additionally replaces the CFG construction.
A missing feature from the Python implementation was also the possibility to extend an
existing repository. The Python implementation had the learning rate logic disabled, so
I re-enabled it and fixed it.

While the original research only evaluated against x86–64 binaries, I opted to also apply it
to ARM/AArch64, to get a better comparison with the other evaluated approaches.[18, 34]

4.2.2 GeneDiff

Because this approach uses similar methods as Asm2Vec, the code is also based on the
unofficial Python implementation of Asm2Vec and follows the general structure that is
outlined in the GeneDiff paper.

The multi-path generation algorithm can run into corner cases that do not terminate.
This happens when there are no source or sink nodes, which happens if there is a cycle
in the CFG, or in case the source/sink nodes are not reachable from the current node in
the path. Generally the algorithm does not terminate when the CFG has cycles, because
it does only terminate when the current node does not have a previous node. To change
that, during the node choice, it is checked if there are source/sink nodes and that they
are reachable from the chosen node. Furthermore, the chosen node is directly added
to the blks set, which stores the already selected basic blocks, from the Algorithm 2
in [46] to preferable not select it again, which breaks eventual cycles and makes the
algorithm terminate. These changes to the original algorithm are also implemented in
my implementation.

4.2.3 SAFE

The original source code did not fit all the needs and requirements of this thesis and
needed to be adjusted. In order to have a uniform function detection and disassembly
method, I added an angr implementation to the existing radare2 function analyzer. That
means instead of calling the external radare2 executable and letting it generate the CFG,
the SAFE implementation can use angr directly in python and extract the CFG. As
additional functionality, I added the possibility to embed all functions in a binary, as it

22

4.2. Implementation

was only possible to embed single functions by their address. Because the implementation
uses deprecated dependencies, the TensorFlow [2] code had to be upgraded and updated
to make it work in a current up-to-date environment.

To make it easier to train and build a repository of functions/binaries in one go, I added
the option to train the word2vec model. The original implementation only referred to
the pretrained word2vec model, the word2vec trainer was implemented in order to have
the whole SAFE model be trained and evaluated. The adapted implementation needs
multiple versions of functions with the same names. This allows the model to specifically
learn the differences between compilers and different compiler optimizations. However,
without multiple versions of the same binary, SAFE cannot be trained.

4.2.4 VulSeeker

The original source code had many Chinese comments that had to be translated first,
in order to make the code more readable. Additionally, it was written in Python 2, so
it first had to be ported it to Python 3, which was also used to refactor the code base.
While adapting the code for use within this thesis, several performance improvements
were made: Recursive function calls have been removed, directories have been used
for indexing intermediate data and values, for example addresses of string references,
are pre-calculated. To make the source code repository smaller I also removed all the
unnecessary files like binaries or CFG files. Some parts had to be rewritten because it
used the IDA Python application programming interface (API). The functionality of IDA,
in this case the CFG extraction and disassembly, has been replaced by angr. As with
SAFE, the implementation relied on deprecated dependencies, therefore the TensorFlow
code also had to be updated/upgraded.

Originally it used a custom version of miasm2, which still relied on Python2 and was
not up-to-date with mainline miasm. This custom version of miasm has been replaced
for the implementation in this thesis and is using mainline miasm [9] now. VulSeeker
uses the intermediate representation control-flow graph (IRCFG) of miasm, which is a
CFG for IR, that can not be replaced by angr because it uses a different IR and has no
IRCFG. VulSeeker quickly runs into performance issues, as it would take a small sized
repository, with 1000 functions, about 35 days to run.

4.2.5 Common interface

For training and evaluation I designed a unified interface of scripts that is used by all
implementations. This interface is called by one script that can train and evaluate all
implementations at once. The arguments passed to this script are passed on to the
interface and used there.

The common interface is called by a Bash script (evaluate.sh) that trains and extracts
the results of all implementations. To make them work one needs to prepare the binaries
first by collecting them in a directory, this is also done by Bash script (prepare.sh),
which copies the different compiled binaries from the corresponding build directory into

23

4. Implementation

a common binary directory. To speed up analysis the reading of the binary and the
extraction of the CFG by angr can be pre-calculated and stored in binary format, so the
implementations can read them and use the finished CFG. The first script of the common
interface is the training script (train.py) which is individual to each implementation,
but follows the same steps: First the directory that was given is searched for all the
binaries that should be trained. Afterwards the individual implementations are called
and the models/repositories are trained from the functions of the binaries. At the end the
models or function repositories are saved to disk, so they can be used again later. The
second script (run.py) is for evaluating the approaches, this is done by querying and
comparing functions from binaries with the saved ones in the respective saved function
repositories. It works similar to the first script, as it also first collects all binaries
that should be evaluated, but then executes the non-training/query/search/estimation
methods. The result of these comparisons is saved in a comma-separated values (CSV)
file (result.csv) for further evaluation and result extraction. An illustration of this
process can be seen in Figure 4.1, where interactions between the different components
are displayed by arrows and different implementations are indicated with dashed line
borders.

evaluate.sh
Binary

repository

repo/
model

repo/
model

repo/
model

repo/
model

train.py

train.py

train.py

train.py

run.py

run.py

run.py

run.py

result.csv

result.csv

result.csv

result.csv

A
sm

2V
ec

G
en
eD

iff
SA

FE
Vu

lS
ee
ke
r

Figure 4.1: Graphical summery of the common interface and script workflow.

Both scripts also support various options like enabling or disabling debug outputs or

24

4.3. Open-source software tools implementation

parallel processing for faster run times. The training script generally also skips already
processed steps when the relevant files and directories are already exist. Similar to that
when the second script extracts the results, it can resume when it was interrupted, by
skipping the already processed paths of the binaries.

4.3 Open-source software tools implementation

Out of the selected approaches GeneDiff was integrated with the OSS tools. While there
are many OSS tools out there the decision was made that the implementation is done
with radare2 and Ghidra. The reason for this is that they are widely used and already
have many plugins, which makes adopting and implementing easier.

The integrations are structured in a similar manner to the evaluation scripts in sub-
section 4.2.5. They call the same functions that are used for training and similarity
checks. However, instead of loading binary files from a directory, the binary information
is passed from the respective tool. If only the selected function should be trained or
checked, the plugins ask the tool for the current function and pass that information to
the implementation.

Because they both rely on the same implementation a trained repository can be used
with both. Additionally, they support configuration files, meaning settings and changes
can be saved. Changes can be made to log levels, i.e. to enable debugging, parallelism
can be turned on and off, and others. In general, every parameter passable as command
line flags in subsection 4.2.5 can be set via configuration files. To make it possible to save
multiple binaries that contain the same functions or function addresses in one repository,
the repository stores each binary separately and each binary contains its functions.

4.3.1 Radare2

To interact with radare2 a script was developed that extends the existing radare2 CLI
to train and query repositories. It uses rlang-python [61] to integrate the script as a
core plugin into the radare2 CLI, which makes it seamless for the user to use. To make
this work the genediff.py script location is passed to the radare2 executable via the
command line argument -i, which tells radare2 to run the script after the binary file
was loaded. Radare2 then calls the script every time a command is sent to radare2,
e.g. via the CLI, and the script checks if it is a relevant command for it, and performs
the related action. While radare2 could als be used for generating the CFG, in the
current implementation angr is still used for this because it makes the saved repository
interoperable between tools. An example workflow of the working plugin can be seen in
Listing 4, where a function of a binary is trained and evaluated against a function from
a different binary. To train the function the binary has to be analysed (with the aaa
command), else radare2 can not locate the functions (s sym.even_odd). With the
next command (Aa.) the current selected function is trained, in this case the “even_odd”
function. Because we want to reuse the repository, we need to save it to a file with the As

25

4. Implementation

$ r2 -i ./genediff.py ./even_odd_amd64
[0x00001060]> A?
Usage: A[calsrwe] [file]
| A show this help
| Ac check function(s) against repository
| Aa add function(s) to repository
| Al load repository
| As save repository
| Ad reset current repository
| Ar read configuration
| Aw write configuration
| Ae get/set configuration options
| A? show this help
[0x00001060]> aaa
[...]
[0x00001060]> s sym.even_odd
[0x00001159]> Aa.
100%| | 1/1 [00:00<00:00, 81.85it/s]
[0x00001159]> As ./bin.repo
[0x00001159]> q
$ r2 -i ./genediff.py ./even_odd_aarch64
[0x000006c0]> aaa
[...]
[0x000006c0]> s sym.even_odd
[0x000007d4]> Al ./bin.repo
[0x000007d4]> Ac.
100%| | 1/1 [00:00<00:00, 267.90it/s]
even_odd_amd64:

sym.even_odd (0x7d4):
even_odd (0x1159): 0.9574687841851504

[0x000007d4]> q

Listing 4: Radare2 plugin in action on x86-64 and AArch64 compiled binaries from
Listing 1.

command. The same steps are followed by the second radare2 invocation, but this time
the stored binary repositories is loaded (Al) and the current function in check against it
(Ac.), the resulting similarity score can be seen in the second to last line.

4.3.2 Ghidra

Ghidra plugins are using a Java API and are typically written in Java, but because all
implemented approaches are written in Python, it would introduce additional maintenance
overhead if the plugin was written in Java. Because of that, the Ghidra Bridge [41]
project was used to integrate the Python implementation. The interaction with Ghidra
works via the CLI similar to the radare2 script from above. For this to work the Ghidra
Bridge needs to be started first as the script communicates with it via network sockets
and in order to retrieve the necessary information from the running Ghidra instance. The

26

4.3. Open-source software tools implementation

script itself is therefore independent from Ghidra and can be executed everywhere via the
Python interpreter. To maintain compatibility between tools regarding the saved function
repositories, angr is still used for generating and saving them. The script output of an
example can be seen in Listing 5, that shows the training and evaluation of two functions
out of Ghidra. To make this work one first needs to start a code browser instance in

$ python ./genediff.py
Welcome to the genediff shell. Type help or ? to list commands.

> ?

Documented commands (type help <topic>):
==
add check delete env exit help load quit read save write

> add current
100%| | 1/1 [00:00<00:00, 81.01it/s]
> save ./bin.repo
> quit
$ python ./genediff.py
Welcome to the genediff shell. Type help or ? to list commands.

> load ./bin.repo
> check current
100%| | 1/1 [00:00<00:00, 145.62it/s]
even_odd_amd64:

even_odd (0x7d4):
even_odd (0x1159): 0.9576054810967567

> quit

Listing 5: Ghidra plugin in action on x86-64 and AArch64 compiled binaries from
Listing 1.

Ghidra and start the Ghidra Bridge, so the script can connect to the socket. After the
script has connected to the running instance, the current in Ghidra selected function
can be trained (add current) and the repository saved (save). When now a new
binary is loaded into Ghidra and the Ghidra Bridge is restarted, the stored repository can
be loaded (load) and the current selected function can be checked against it (check),
which returns the similarity between the two functions.

27

CHAPTER 5
Evaluation

In order to get an overview of the four different implemented approaches, this chapter
performs an evaluation of these approaches, based on metrics commonly used in the
accompanying literature. Besides accuracy in function clone detection, training and
execution speed are also metrics of interest.

5.1 Methodology
A widely used metric for comparing different approaches is the area under the curve
(AUC) of the receiver operating characteristic (ROC). The ROC curve plots the true
positive vs. the false positive rate regarding a certain threshold and the AUC is the area
under the plotted line.[27, 8] It is used to quantify the quality of embeddings, by using
the threshold to decide when two functions are similar regarding their cosine distance.
Many of the evaluated approaches [46, 48] use and compare with this metric. But this
is not the only metric that is used to evaluate accuracy, precision (the true positives
divided by all positives) and recall (the true positives divided by false negatives plus
the true positives) are also necessary, because we need it to measure the performance
in a real repository context, where we want the implementations to return the correct
function first.[27, 8] Unfortunately precision and recall can not be used directly in the
evaluation, thus the Precision at Position 1 (Precision@1) is used, where the precision
value is calculated for function matches at the first/top position.[18] A different metric
that is also important for practical approaches is the train and run time.

5.2 Preparation
The actual evaluation built upon the common interface that is described in subsection 4.2.5.
To perform the evaluation, first the code sources, that are compiled and used for building
the binary repository, must be selected, downloaded and put into the repository directory.

29

5. Evaluation

In the next step the provided sources are compiled via a combination of a Docker
container and a shell script into Executable and Linking Format (ELF) files/binaries.
This standardises and streamlines the compilation process so it can be replicated more
easily. After the sources are compiled into the different ELF binaries they are collected
into one common directory structure with a Bash script (prepare.sh). The directories
are organized by compiled architecture, compiler version and compiler flags, which are
typically optimization levels. As mentioned before to improve performance and reduce
the run time of the implementations, the CFG of the compiled binaries is calculated
beforehand and saved as cache.

Afterwards the evaluation script of subsection 4.2.5, with the build binary repository
and cache passed on, is executed. The results of this stage are the CSV files that are
going to be processed after processing finishes. Each line in the result files consist out
of the path of the binary, the compared functions and the similarity value, which is
a distance between the vectors of the functions. These files are now processed by the
extract_results.py Python script and transformed into new CSV files (out.csv).
The script reduces the CSV files to the lines where the similarity value is the highest for
a particular path and function pair, which is later used by the Precision@1 script.

To plot and calculate the ROC curves and the area under them, the auc.py script is used.
It reads the result CSV files (result.csv) and makes the calculations, by extracting
the similarity scores and building a target score by comparing the function names. The
last Python script (precision.py) is used to calculate the Precision@1 values. It does
this by reading the previously created CSV files (out.csv) and extracting if, for a given
function pair, it is a true positive (the functions are similar) or a false positive.

5.3 Repository

The large repository was filled with the source codes of OpenSSL 1.1.1i, curl 7.74.0,
PostgreSQL 13.1 and glibc 2.32. During the development and evaluation of some
implementations there were problems with the PostgreSQL binary, as analysis within the
implementations ran into memory constraints. Therefore, PostgreSQL binaries are not
included in the evaluation.

For the compilation process different compiler versions and architectures were used:
different versions and architectures of the GNU Compiler Collection (GCC), the GCC
version vom 7 to 10 and the CPU architectures of AArch64 (ARM64), ARM (32) armel
& armhf, x86_64 and x86 (i686).

The small repository consists out the curl binaries from the large repository and that used
the output of GCC version 10 for training and the output of GCC version 8 evaluation.
The exception to this is SAFE as it needs the same binaries twice for training so it was
trained with version 9 and 10 and evaluated with version 8. The same was done to
VulSeeker but here it was trained with 9 and 10 and evaluated with 8 and 9.

30

5.4. Results

The repository of the optimization comparisons uses the binaries of the compiled curl
7.75.0 source code and compiles them with the GCC version 10 and the architectures
mentioned before. Instead of compiling with different GCC version the sources are
compiled with different optimization levels, in this case from no optimization (O0) to full
optimization (O3) with all steps in between (O1 and 02).

5.4 Results

The first criteria that is looked into are the ROC curves with their respective AUCs.
The results for the small repository can be seen in Figure 5.1, where the ROC curves
are plotted for all four tested approaches and the AUC is given for each. This shows us

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
sit

iv
e
R
at
e

Receiver operating characteristic

asm2vec ROC curve (area = 0.54)
genediff ROC curve (area = 0.57)
SAFE ROC curve (area = 0.94)
VulSeeker ROC curve (area = 0.64)

Figure 5.1: The ROC curves of all approaches with the small repository.

that the different approaches handle the given binaries differently and result in different
outputs. The AUC value, that is stated in the graph as “area” in the legend, tells us the
area under the respective curves, which can also be seen in the plot. When comparing the
different approaches between each other we can see that SAFE outperforms VulSeeker
which in return outperforms both GeneDiff and Asm2Vec. This tells us that, for all
functions and binaries in the given repository, the similarity between the learned and
the evaluated function, is the best in SAFE and the worst in Asm2Vec. The Table 5.1

31

5. Evaluation

however tells us that the Precision@1 value of VulSeeker is the best and of Asm2Vec the
worst. What also stands out, is that they all do not perform as well here as they showed
in their respective papers, but SAFE comes the closest with the AUC value that is 0.05
less than the original. A possible reason for this could be the chosen repository/binaries
or the evaluation methodology, that could be implemented wrong.

With the ROC curve of Figure 5.2 the behavior of the different implementations on a
large repository can be seen. This scenario mirrors the results of the small repository in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
sit

iv
e
R
at
e

Receiver operating characteristic

asm2vec ROC curve (area = 0.53)
genediff ROC curve (area = 0.51)
SAFE ROC curve (area = 0.96)

Figure 5.2: The ROC curves of the large repository.

terms of the AUC of SAFE and the other two implementations perform barely above
a random classifier, that is displayed by the dashed diagonal line. Asm2Vec performs
better than GeneDiff, which is the opposite of the small repository, but both do cross
the random classifier line, which indicates that there is something wrong with either how
they both handle the dataset/evaluation or the implementations are buggy/faulty. When
looking at the Precision@1 values in Table 5.1, we can see that Asm2Vec performs well
below the other two approaches and SAFE also outperforms GeneDiff.

SAFE in general seems to behave strangely as it only has very few points on the curve
and therefore behaves very “angular”, except for the second optimization evaluation.
This does not match with the original research [48] and can be an indication that the
implementation or evaluation in this thesis is not correct. This is also indicated by

32

5.4. Results

running the evaluation on the OpenSSL 1.1.1i binaries of the large repository with the
original trained model, as they result in similar angular curves and results (AUC of 0.93
and Precision@1 of 0.195100) as the one in the small repository.

Repository Approach Precision@1

All approaches with the small repository

asm2vec 0.000703
genediff 0.149039
SAFE 0.181520

VulSeeker 0.203235

The large repository
asm2vec 0.000067
genediff 0.003827
SAFE 0.015316

Optimization level 0 vs. level 3 from the first
optimization evaluation

asm2vec 0.008557
genediff 0.001716
SAFE 0.339909

Optimization level 3 vs. level 0 from the first
optimization evaluation

asm2vec 0.012167
genediff 0.002638
SAFE 0.616920

Optimization level 2 vs. level 1 from the first
optimization evaluation

asm2vec 0.008788
genediff 0.006861
SAFE 0.581922

Optimization level 0 vs. level 3 from the second
optimization evaluation

asm2vec 0.003060
genediff 0.002547
SAFE 0.045882

Optimization level 3 vs. level 0 from the second
optimization evaluation

asm2vec 0.004557
genediff 0.000851
SAFE 0.052171

Optimization level 2 vs. level 1 from the second
optimization evaluation

asm2vec 0.008100
genediff 0.002098
SAFE 0.107313

Table 5.1: Precision at Position 1 of the evaluations inspired by Table 3 in [48].[18]

5.4.1 Optimization

The ROC graphs of the first optimization evaluation can be seen in Figure 5.3, where the
first optimization level was trained and the second one was evaluated. First of all SAFE
outperforms the other two (VulSeeker was not tested as it was too slow to get results and
therefore not feasible, as mentioned before) tested approaches clearly again, which do
perform about the same as a random classifier (AUC of 0.5). Notable is that GeneDiff
performs exactly like a random classifier and Asm2Vec a bit better (Figure 5.3a) and
worse (Figure 5.3c), as it also dips under the “random” guess diagonal dashed line. When
comparing the different plots between each other it seems that they all perform and
look similar, especially the last two. It is also notable that when comparing Figure 5.3a

33

5. Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
sit

iv
e
R
at
e

Receiver operating characteristic

asm2vec ROC curve (area = 0.51)
genediff ROC curve (area = 0.50)
SAFE ROC curve (area = 0.95)

(a) Optimization level 0 vs. level 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
sit

iv
e
R
at
e

Receiver operating characteristic

asm2vec ROC curve (area = 0.50)
genediff ROC curve (area = 0.50)
SAFE ROC curve (area = 0.99)

(b) Optimization level 3 vs. level 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
sit

iv
e
R
at
e

Receiver operating characteristic

asm2vec ROC curve (area = 0.46)
genediff ROC curve (area = 0.50)
SAFE ROC curve (area = 0.98)

(c) Optimization level 2 vs. level 1.

Figure 5.3: The ROC curves of different optimization levels from the first optimization
evaluation.

and Figure 5.3b, which have the same binaries but are trained and evaluated with the
respective other, in the second curves SAFE performs better.

The second optimization evaluation, which can be seen in Figure 5.4, is trained with a
subset (here 70%) of all optimized binaries/functions, hence all optimization levels, and
evaluated with the remaining subset of the mentioned optimization levels. When looking
into the result of this we can see that they do look better, than the first evaluation,
especially SAFE, but are still not what the respective papers showed. Here does SAFE
still perform the best and looks way better, but does not perform as well when looking at
the AUC of the ROC curve. Asm2Vec does perform a bit better, but does also dip below
the random classifier more than in the first evaluation and GeneDiff is still the same as a
random classifier. Comparing the first two graphs (Figure 5.4a and Figure 5.4b), which
are the same optimization levels but reveres, one can see that they look the same and
result in the same values. The last graph Figure 5.4c does show the best results out of
the three.

34

5.5. Time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
sit

iv
e
R
at
e

Receiver operating characteristic

asm2vec ROC curve (area = 0.50)
genediff ROC curve (area = 0.50)
SAFE ROC curve (area = 0.89)

(a) Optimization level 0 vs. level 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
sit

iv
e
R
at
e

Receiver operating characteristic

asm2vec ROC curve (area = 0.50)
genediff ROC curve (area = 0.50)
SAFE ROC curve (area = 0.89)

(b) Optimization level 3 vs. level 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
sit

iv
e
R
at
e

Receiver operating characteristic

asm2vec ROC curve (area = 0.54)
genediff ROC curve (area = 0.50)
SAFE ROC curve (area = 0.94)

(c) Optimization level 2 vs. level 1.

Figure 5.4: The ROC curves of different optimization levels from the second optimization
evaluation.

That means when comparing binaries with different optimization levels, the more the
levels are apart the less the approaches recognize the similarities, which makes sense
as higher optimization levels usually add more optimization methods and so gradually
change the resulting binaries.

Additionally, Table 5.1 shows that Precision@1 values of SAFE are better than those of
Asm2Vec and GeneDiff in both evaluations. What is striking, however, is that Precision@1
values of SAFE are worse in the second evaluation, even though the AUC values are
better.

5.5 Time

The (run-)time was tracked during the creation and training/evaluation of the optimiza-
tion repository. The prepare-script, that collects the binaries, took 70 and the cache
script, that extracts the CFG from the binaries to speed up the implementation, took

35

5. Evaluation

1163 seconds to complete. Both scripts run on the whole repository, i.e. do not distinguish
between the different optimization levels.

5.5.1 First optimization evaluation

The scripts/implementations of the first optimization evaluation are performed on one
optimization level each, where the results are the average of the three optimization runs.

Building of the Asm2Vec repository, that is used for training, takes about two minutes,
which is accelerated by the cache that was built before, and the training itself 35 minutes.
On the evaluation side of Asm2Vec, it takes about one hour and 40 minutes to generate
the finished CSV, which includes the loading of the binary cache, but varies considerably,
depending on the repository and the binaries in it.

In GeneDiff the function extraction, out of the cache, takes three minutes and the model
training on average about seven and a half hours. That is the same time on average that
it takes to generate the evaluation. Those two times fluctuate a lot.

With SAFE, the i2v implementation takes around three minute and the data extrac-
tion/dataset creation takes 24 minutes on average. The training process itself takes 14
minutes with the hyperparameters shown in Table 5.4. For the evaluation the implemen-
tation takes over two hours on average, which varies a lot.

5.5.2 Second optimization evaluation

For the second optimization evaluation, the first step was to train the three implementa-
tions with the subset of all optimization level binaries/functions. To do this all binaries
were read and the functions split into the training and evaluation set, which took about
two minutes. After that the training was done once for the implementations and the
evaluation was done with the different levels.

The data extraction for the training process of Asm2Vec took five and a half minutes and
the training itself took one hour and 22 minutes. The evaluation process took without
optimizing it about ten hours and with the optimized evaluation the time was reduced
to about one hour.

For GeneDiff the data extraction, including callee expansion and multi path generation,
took 16 minutes and the training process 18 hours. Without the optimized evaluation
implemented it took GeneDiff almost 35 hours to complete one evaluation, with the
optimized implantation it was cut down to three and a half hour.

SAFE took 51 minutes for the data extraction and dataset creation, for the training it
took 37 minutes. The evaluation took about 50 minutes.

VulSeeker was not evaluated with any optimization, because it already took over 6 hours
for the small subset of binaries, even with lowered/small parameters, to complete during
the previous evaluations. The only evaluation was done on the small repository (see
Figure 5.1) and there not on the full compiler version as that one would have taken over

36

5.6. Hyperparameters

a month to complete. A smaller subset was evaluated, of about one and a half percent,
and even that took over six hours to complete.

5.6 Hyperparameters

In this section the used hyperparameters for the training and evaluation process are
stated.

5.6.1 Asm2Vec

The parameters for Asm2Vec can be seen in Table 5.2

Parameter Name Meaning Value
d The dimension of the vectors for tokens. 100
initial_alpha The initial learning rate. 0.0025
alpha_update_interval How many tokens can be processed before

changing the learning rate?
10000

rnd_walks How many random walks to perform to
sequence a function?

10

neg_samples How many samples to take during negative
sampling?

25

iteration How many iterations to perform? 1

Table 5.2: Asm2Vec hyperparameters adapted from the Asm2Vec repository.[51, 18]

5.6.2 GeneDiff

The parameters for GeneDiff can be seen in Table 5.3

Parameter Name Meaning Value
num_ins The number of instructions in the callee function

to be considered for not expanding.
10

threshold The threshold ratio between the callee and caller
to be considered for not expanding.

0.5

d the dimension of the instruction vector. 100
starting_alpha The starting alpha for the learning rate. 0.025
ALPHA_UPDATE_RATE The alpha update interval. 10000
negative_samples Number of negative samples. 5
iteration The number of iterations. 50
window_size The window size. 3

Table 5.3: GeneDiff hyperparameters adapted from the Table 5.2.[46, 50]

37

5. Evaluation

5.6.3 SAFE

The parameters for SAFE can be seen in Table 5.4

Parameter Name Meaning Value
i2v model

min_frequency The minimal world frequency. 8
batch_size The training batch size. 128
embedding_size The embedding vector dimension. 100
skip_window The window size to one size. 4
num_skips The number of times an input should be reused to

create a label.
2

num_sampled The number of negative samples. 16
iterations_factor A factor that specifies how many iterations are

made.
50

Self-Attentive Network model
batch_size The training batch size. 250
num_epochs The number of training epochs. 50
embedding_size The function embedding dimension. 100
learning_rate The initial learning rate. 0.001
l2_reg_lambda A regularization coefficient. 0
rnn_state_size The RNN state dimension. 50
rnn_depth The RNN depth. 1
max_instructions The maximum amount of instructions in a function

(truncated when to long).
150

attention_hops The attention hops number (r). 10
attention_depth The attention depth (da). 250
dense_layer_size The size of the dense layer (e). 2000
seed Fixed seed to initialize the random generators. 2

Table 5.4: SAFE hyperparameters adapted from the Table 5.2.[17, 48, 71]

5.6.4 VulSeeker

The parameters for VulSeeker can be seen in Table 5.5

38

5.6. Hyperparameters

Parameter Name Meaning Value
P The embedding size. 64
D The dimension of the input vector. 8
B The batch size. 10
lr The learning rate. 0.0001
max_iter The number of iterations. 100
decay_steps The decay step of the learning rate. 10
decay_rate The decay rate of the learning rate. 0.0001

Table 5.5: VulSeeker hyperparameters adapted from the Table 5.2.[29, 30]

39

CHAPTER 6
Conclusion

Binary function clone detection is an important topic for binary analysis and reverse
engineering. While there is research done in this field, practical and open source imple-
mentations are missing and the functionalities that widely used analysis tools provide
are lacking in this area.

In this thesis, four function clone detection approaches are selected, implemented and
evaluated, with one of them being integrated into commonly used OSS tool. These four
are selected out of approaches from the last few years. The implementations are either
based on existing open source implementations or complete reimplementations of the
approaches. They are all trained and evaluated together by a combination of common
interfaces and scripts.

For the OSS tool implementation GeneDiff was chosen, because it initially performed
the best and most consistent of all approaches and was outperformed only after a
reevaluation, that happened after the implementation was done already. Additionally,
it has the advantage that it was easy to adopt for the use case, as saving and restoring
repositories was straightforward to implement. The developed common interface makes
it convenient for all implementation to be adopted for a OSS tool.

During the evaluation it became clear that not all implementation matched the original
research claims, which can result from the selected repository and methodology for
evaluation or potential errors in implementing the approaches in this thesis. Nonetheless,
does this thesis show that it is often not so simple to verify and adapt the research for
real world workflows.

There is still active research and development in the field, so the goal would be, that in
the future there will be approaches and open source implementations that make it into
OSS tools and into the binary analysis and reverse engineering workflows of people.

41

List of Figures

2.1 The code from Listing 1 compiled as AArch64 binary displayed as CFG. It
has five basic blocks, two function calls and no loops. 5

4.1 Graphical summery of the common interface and script workflow. 24

5.1 The ROC curves of all approaches with the small repository. 31
5.2 The ROC curves of the large repository. 32
5.3 The ROC curves of different optimization levels from the first optimization

evaluation. 34
5.4 The ROC curves of different optimization levels from the second optimization

evaluation. 35

43

List of Tables

3.1 Table of comparison between different approaches. This table also includes
the chosen approaches from section 4.1.[34] 16

5.1 Precision at Position 1 of the evaluations inspired by Table 3 in [48].[18] . 33
5.2 Asm2Vec hyperparameters adapted from the Asm2Vec repository.[51, 18] 37
5.3 GeneDiff hyperparameters adapted from the Table 5.2.[46, 50] 37
5.4 SAFE hyperparameters adapted from the Table 5.2.[17, 48, 71] 38
5.5 VulSeeker hyperparameters adapted from the Table 5.2.[29, 30] 39

45

List of Listings

1 C code of a simple functions that displays if a number is even or odd and
returns 0 or 1 accordingly. 3

2 The assembly code outputted from the objdump utility of the Listing 1
compiled as a x86–64 binary. 4

3 Zignatures that are generated from the x86-64 and AArch64 compiled
binaries from Listing 1. 17

4 Radare2 plugin in action on x86-64 and AArch64 compiled binaries from
Listing 1. 26

5 Ghidra plugin in action on x86-64 and AArch64 compiled binaries from
Listing 1. 27

47

Acronyms

ACFG attributed control-flow graph. 6, 12

AI artificial intelligence. 7, 11

ANN artificial neural network. 8

API application programming interface. 23, 26

AUC area under the curve. 29, 31–35

BCF bogus control flow. 6, 14

BERT Bidirectional Encoder Representations from Transformers. 8, 13

BGM bipartite graph matching. 12

BN Bayesian network. 15

CBOW continuous bag-of-words. 8, 12

CFG control-flow graph. 4–7, 11–15, 19–25, 30, 35, 43

CLI command-line interface. 9, 25, 26

CNN convolutional neural network. 8, 13

COTS commercial off-the-shelf. 9, 13, 15

CPU central processing unit. 3, 6, 15, 21, 30

CRC cyclic redundancy check. 15

CSV comma-separated values. 24, 30, 36

DFG data flow graph. 6, 21

DNN deep neural network. 8, 12, 21

49

ELF Executable and Linking Format. 30

FLA control flow flattening. 6, 14

FLIRT Fast Library Identification and Recognition Technology. 15, 16

GCC GNU Compiler Collection. 30, 31

HMM hidden Markov model. 14

HSP hash subgraph pairwise. 15

I/O input/output. 13

ICFG inter-procedural control-flow graph. 6, 12

IR intermediate representation. 20, 23

IRCFG intermediate representation control-flow graph. 23

LCS longest common subsequence. 12, 14

LSFG labeled semantic flow graph. 21

LSH locality-sensitive hashing. 12, 14

LSTM long short-term memory. 11

ML machine learning. 7, 8, 11, 21

MLP multilayer perceptron. 8, 13

MPNN message passing neural networks. 13

NLP natural language processing. 8, 11, 19, 20

NMT neural machine translation. 11

NN neural network. 8, 11, 20

NSA National Security Agency. 9, 15

OSS open-source software. xiii, 2, 9, 15, 19, 25, 41

PV-DM Paragraph Vector-Distributed Memory. 19, 20

RNN recurrent neural network. 8, 11, 20, 38

50

ROC receiver operating characteristic. 29–35, 43

SDB string database. 16

SRE software reverse engineering. 9

SUB instruction substitution. 6

SVM support vector machine. 12

TADW text-associated DeepWalk. 12

51

Bibliography

[1] 0x6d696368. Ghidra FID generation. https://blog.threatrack.de/2019/
09/20/ghidra-fid-generator/, 9 2019. last accessed 7th June 2021.

[2] Martín Abadi, P. Barham, Jianmin Chen, Z. Chen, Andy Davis, J. Dean, M. Devin,
S. Ghemawat, Geoffrey Irving, M. Isard, M. Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, D. Murray, Benoit Steiner, P. Tucker, Vijay Vasudevan, Pete Warden,
Martin Wicke, Yuan Yu, and Xiaoqian Zhang. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), OSDI’16, pages 265–283, USA, 2016. USENIX
Association.

[3] Toufique Ahmed, Premkumar Devanbu, and Anand Ashok Sawant. Finding inlined
functions in optimized binaries. CoRR, abs/2103.05221, 2021.

[4] Saed Alrabaee, Paria Shirani, Lingyu Wang, and Mourad Debbabi. FOSSIL: A
resilient and efficient system for identifying foss functions in malware binaries. ACM
Transactions on Privacy and Security, 21(2):1–34, 01 2018.

[5] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Commun. ACM, 51(1):117–122, 1 2008.

[6] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia Slowinska, and Herbert Bos.
An in-depth analysis of disassembly on full-scale x86/x64 binaries. In 25th USENIX
Security Symposium (USENIX Security 16), pages 583–600. USENIX Association, 8
2016.

[7] Dennis Andriesse, Asia Slowinska, and Herbert Bos. Compiler-agnostic function
detection in binaries. In 2017 IEEE European Symposium on Security and Privacy
(EuroS P), pages 177–189, 4 2017.

[8] Paula Branco, Luís Torgo, and Rita P. Ribeiro. A survey of predictive modeling on
imbalanced domains. ACM Comput. Surv., 49(2):1–50, 8 2016.

[9] CEA IT Security. Miasm. https://github.com/cea-sec/miasm. last accessed
4th August 2021.

53

https://blog.threatrack.de/2019/09/20/ghidra-fid-generator/
https://blog.threatrack.de/2019/09/20/ghidra-fid-generator/
https://github.com/cea-sec/miasm

[10] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho, and
Hee Beng Kuan Tan. BinGo: Cross-architecture cross-os binary search. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, pages 678–689, New York, NY, USA, 11 2016.
Association for Computing Machinery.

[11] Philippe Charland, Benjamin C. M. Fung, and Mohammad Reza Farhadi. Clone
search for malicious code correlation. In NATO RTO Symposium on Information
Assurance and Cyber Defense (IST-111), Koblenz, 2012.

[12] Hui Chen. The influences of compiler optimization on binary files similarity detection.
In Proceedings of the 2013 the International Conference on Education Technology
and Information System (ICETIS 2013), pages 971–975. Atlantis Press, 06 2013.

[13] Zimin Chen and Martin Monperrus. A literature study of embeddings on source
code, 04 2019.

[14] Andrew M. Dai and Quoc V. Le. Semi-supervised sequence learning. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

[15] Yaniv David, Nimrod Partush, and Eran Yahav. Similarity of binaries through re-
optimization. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, pages 79–94, New York, NY,
USA, 06 2017. Association for Computing Machinery.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding, 10 2018.

[17] Giuseppe Antonio Di Luna. Safe. https://github.com/gadiluna/SAFE. last
accessed 21th August 2021.

[18] Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charlan. Asm2vec: Boosting
static representation robustness for binary clone search against code obfuscation
and compiler optimization. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 472–489, 5 2019.

[19] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. DeepBinDiff: Learning
program-wide code representations for binary diffing. In Network and Distributed
System Security Symposium, 01 2020.

[20] Thomas Dullien. Searching statically-linked vulnerable library functions in
executable code. https://googleprojectzero.blogspot.com/2018/12/
searching-statically-linked-vulnerable.html, 12 2018. last accessed
16th July 2021.

54

https://github.com/gadiluna/SAFE
https://googleprojectzero.blogspot.com/2018/12/searching-statically-linked-vulnerable.html
https://googleprojectzero.blogspot.com/2018/12/searching-statically-linked-vulnerable.html

[21] Thomas Dullien and Sebastian Porst. REIL: A platform-independent intermediate
representation of disassembled code for static code analysis. In Proceeding of
CanSecWest. Citeseer, 2009.

[22] Chris Eagle. The IDA Pro Book, 2nd Edition. No Starch Press, 2 edition, 2011.

[23] Chris Eagle and Kara Nance. The Ghidra Book. No Starch Press, Incorporated, 8
2020.

[24] Ata Elahi. Computer Systems. Springer International Publishing, Cham, 2018.

[25] Mohammad Reza Farhadi, Benjamin C. M. Fung, Philippe Charland, and Mourad
Debbabi. Binclone: Detecting code clones in malware. In Proceedings of the 2014
Eighth International Conference on Software Security and Reliability, SERE ’14,
pages 78–87, USA, 06 2014. IEEE Computer Society.

[26] Mohammad Reza Farhadi, Benjamin C. M. Fung, Yin Bun Fung, Philippe Charland,
Stere Preda, and Mourad Debbabi. Scalable code clone search for malware analysis.
Digital Investigation, 15(C):46–60, 07 2015. Special Issue: Big Data and Intelligent
Data Analysis.

[27] Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861–
874, June 2006.

[28] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng Yin.
Scalable graph-based bug search for firmware images. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS ’16,
pages 480–491, New York, NY, USA, 10 2016. Association for Computing Machinery.

[29] Jian Gao. Vulseeker. https://github.com/buptsseGJ/VulSeeker. last
accessed 22th August 2021.

[30] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. Vulseeker: A semantic
learning based vulnerability seeker for cross-platform binary. In Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, pages 896–899, New York, NY, USA, 9 2018. Association for Computing
Machinery.

[31] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. Neural message passing for quantum chemistry. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 1263–1272. PMLR,
PMLR, 06–11 Aug 2017.

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

55

https://github.com/buptsseGJ/VulSeeker
http://www.deeplearningbook.org

[33] Dennis Goodlett. Reverse engineer faster with radare2
signatures. https://hurricanelabs.com/blog/
reverse-engineer-faster-with-radare2-signatures/, 5 2020. last
accessed 6th June 2021.

[34] Irfan Ul Haq and Juan Caballero. A survey of binary code similarity. ArXiv,
abs/1909.11424, 2019.

[35] Hex-Rays. F.L.I.R.T. https://hex-rays.com/products/ida/tech/
flirt/. last accessed 3rd June 2021.

[36] Hex-Rays. IDA F.L.I.R.T. Technology: In-Depth. https://hex-rays.com/
products/ida/tech/flirt/in_depth/. last accessed 3rd June 2021.

[37] Hex-Rays. IDA Pro. https://hex-rays.com/ida-pro/. last accessed 30th
July 2021.

[38] Yikun Hu, Yuanyuan Zhang, Juanru Li, Hui Wang, Bodong Li, and Dawu Gu.
Binmatch: A semantics-based hybrid approach on binary code clone analysis. In
ICSME, pages 104–114. IEEE Computer Society, 08 2018.

[39] He Huang, Amr M. Youssef, and Mourad Debbabi. BinSequence: Fast, accurate
and scalable binary code reuse detection. In Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, ASIA CCS ’17, pages
155–166, New York, NY, USA, 04 2017. Association for Computing Machinery.

[40] Ivannikov Institute for System Programming of the RAS. ISP Obfuscator. Code
obfuscation to protect against vulnerability exploitation. https://www.ispras.
ru/en/technologies/isp_obfuscator/. last accessed 3rd September 2021.

[41] justfoxing. Ghidra Bridge. https://github.com/justfoxing/ghidra_
bridge. last accessed 14th July 2021.

[42] Wei Khoo, Alan Mycroft, and Ross Anderson. Rendezvous: A search engine for
binary code. In 2013 10th IEEE Working Conference on Mining Software Repositories
(MSR 2013), pages 329–338, Los Alamitos, CA, USA, 05 2013. IEEE Computer
Society.

[43] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and
documents. In Eric P. Xing and Tony Jebara, editors, Proceedings of the 31st
International Conference on Machine Learning, volume 32 Issue 2 of Proceedings
of Machine Learning Research, pages 1188–1196, Bejing, China, 22–24 Jun 2014.
PMLR, PMLR.

[44] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. CCLearner: A
deep learning-based clone detection approach. In 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 249–260, 09 2017.

56

https://hurricanelabs.com/blog/reverse-engineer-faster-with-radare2-signatures/
https://hurricanelabs.com/blog/reverse-engineer-faster-with-radare2-signatures/
https://hex-rays.com/products/ida/tech/flirt/
https://hex-rays.com/products/ida/tech/flirt/
https://hex-rays.com/products/ida/tech/flirt/in_depth/
https://hex-rays.com/products/ida/tech/flirt/in_depth/
https://hex-rays.com/ida-pro/
https://www.ispras.ru/en/technologies/isp_obfuscator/
https://www.ispras.ru/en/technologies/isp_obfuscator/
https://github.com/justfoxing/ghidra_bridge
https://github.com/justfoxing/ghidra_bridge

[45] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and Wei
Zou. αDiff: cross-version binary code similarity detection with DNN. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, pages 667–678, New York, NY, USA, 09 2018. Association for Computing
Machinery.

[46] Zhenhao Luo, Baosheng Wang, Yong Tang, and Wei Xie. Semantic-based representa-
tion binary clone detection for cross-architectures in the internet of things. Applied
Sciences, 9(16):3283, 8 2019.

[47] maijin and pancake. The Official Radare2 Book.

[48] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Leonardo Querzoni,
and Roberto Baldoni. Safe: Self-attentive function embeddings for binary similar-
ity. In Proceedings of 16th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), pages 309–329, 6 2019.

[49] Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. In Proceedings of ICLR Workshop, volume
abs/1301.3781, pages 1–12, 01 2013.

[50] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Dis-
tributed representations of words and phrases and their compositionality. In Proceed-
ings of the 26th International Conference on Neural Information Processing Systems
- Volume 2, volume 26 of NIPS’13, page 3111–3119, Red Hook, NY, USA, 10 2013.
Curran Associates Inc.

[51] Sirui Mu. asm2vec. https://github.com/Lancern/asm2vec. last accessed
20th August 2021.

[52] National Security Agency. Function ID. https://
github.com/NationalSecurityAgency/ghidra/blob/
b6ba209ed796343880327bc3337355c303b760cd/Ghidra/Features/
FunctionID/src/main/help/help/topics/FunctionID/FunctionID.
html. last accessed 7th June 2021.

[53] National Security Agency. Ghidra. https://ghidra-sre.org/. last accessed
15th July 2021.

[54] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 28th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’07, pages
89–100, New York, NY, USA, 2007. Association for Computing Machinery.

[55] Lina Nouh, Ashkan Rahimian, Djedjiga Mouheb, Mourad Debbabi, and Aiman
Hanna. BinSign: Fingerprinting binary functions to support automated analysis of
code executables. In Sabrina De Capitani di Vimercati and Fabio Martinelli, editors,

57

https://github.com/Lancern/asm2vec
https://github.com/NationalSecurityAgency/ghidra/blob/b6ba209ed796343880327bc3337355c303b760cd/Ghidra/Features/FunctionID/src/main/help/help/topics/FunctionID/FunctionID.html
https://github.com/NationalSecurityAgency/ghidra/blob/b6ba209ed796343880327bc3337355c303b760cd/Ghidra/Features/FunctionID/src/main/help/help/topics/FunctionID/FunctionID.html
https://github.com/NationalSecurityAgency/ghidra/blob/b6ba209ed796343880327bc3337355c303b760cd/Ghidra/Features/FunctionID/src/main/help/help/topics/FunctionID/FunctionID.html
https://github.com/NationalSecurityAgency/ghidra/blob/b6ba209ed796343880327bc3337355c303b760cd/Ghidra/Features/FunctionID/src/main/help/help/topics/FunctionID/FunctionID.html
https://github.com/NationalSecurityAgency/ghidra/blob/b6ba209ed796343880327bc3337355c303b760cd/Ghidra/Features/FunctionID/src/main/help/help/topics/FunctionID/FunctionID.html
https://ghidra-sre.org/

ICT Systems Security and Privacy Protection - 32nd IFIP TC 11 International
Conference, SEC 2017, Rome, Italy, May 29-31, 2017, Proceedings, volume 502
of IFIP Advances in Information and Communication Technology, pages 341–355,
Cham, 05 2017. Springer International Publishing.

[56] Paladion. Code Obfuscation Part 3 - Hiding Con-
trol Flows. https://www.paladion.net/blogs/
code-obfuscation-part-3-hiding-control-flows, 10 2005. last
accessed 3rd September 2021.

[57] James Patrick-Evans, Lorenzo Cavallaro, and Johannes Kinder. Probabilistic nam-
ing of functions in stripped binaries. In Annual Computer Security Applications
Conference, ACSAC ’20, page 373–385, New York, NY, USA, 12 2020. Association
for Computing Machinery.

[58] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. Cross-architecture bug search in binary executables. In 2015 IEEE Symposium
on Security and Privacy, pages 709–724. IEEE, 5 2015.

[59] Python Packaging Authority. Pipenv. https://pipenv.pypa.io/en/latest/.
last accessed 5th August 2021.

[60] radare org. radare2. https://www.radare.org/n/radare2.html. last ac-
cessed 14th July 2021.

[61] radare org. radare2-rlang. https://github.com/radareorg/
radare2-rlang. last accessed 14th July 2021.

[62] radare org. radare2/cmd_zign.c. https://github.com/radareorg/
radare2/blob/247b509edcc48007eee4b695f2438c527ebf5197/libr/
core/cmd_zign.c. last accessed 6th June 2021.

[63] radare org. sdb: Simple and fast string based key-value database with support
for arrays and json. https://github.com/radareorg/sdb. last accessed 6th
June 2021.

[64] Kimberly Redmond. An instruction embedding model for binary code analysis. 2019.

[65] Kimberly Redmond, Lannan Luo, and Qiang Zeng. A cross-architecture instruction
embedding model for natural language processing-inspired binary code analysis,
2018.

[66] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall Press, USA, 3 edition, 2009.

[67] Noam Shalev and Nimrod Partush. Binary similarity detection using machine
learning. In Proceedings of the 13th Workshop on Programming Languages and
Analysis for Security, PLAS ’18, page 42–47, New York, NY, USA, 2018. Association
for Computing Machinery.

58

https://www.paladion.net/blogs/code-obfuscation-part-3-hiding-control-flows
https://www.paladion.net/blogs/code-obfuscation-part-3-hiding-control-flows
https://pipenv.pypa.io/en/latest/
https://www.radare.org/n/radare2.html
https://github.com/radareorg/radare2-rlang
https://github.com/radareorg/radare2-rlang
https://github.com/radareorg/radare2/blob/247b509edcc48007eee4b695f2438c527ebf5197/libr/core/cmd_zign.c
https://github.com/radareorg/radare2/blob/247b509edcc48007eee4b695f2438c527ebf5197/libr/core/cmd_zign.c
https://github.com/radareorg/radare2/blob/247b509edcc48007eee4b695f2438c527ebf5197/libr/core/cmd_zign.c
https://github.com/radareorg/sdb

[68] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. Firmalice - automatic detection of authentication bypass vulner-
abilities in binary firmware. In Proceedings 2015 Network and Distributed System
Security Symposium, volume 1, pages 1–1. Internet Society, 01 2015.

[69] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. SOK: (state of) the art of war: Offensive techniques in binary
analysis. In 2016 IEEE Symposium on Security and Privacy (SP), pages 138–157.
IEEE, 05 2016.

[70] James T. Streib. Guide to Assembly Language. Undergraduate Topics in Computer
Science. Springer International Publishing AG, Cham, 2 edition, 2020.

[71] TensorFlow. word2vec_basic.py. https://github.com/tensorflow/
tensorflow/blob/876fc8dc4f40c75914dbfcb0a809feaf81be7412/
tensorflow/examples/tutorials/word2vec/word2vec_basic.py. last
accessed 20th August 2021.

[72] Annie H. Toderici and Mark Stamp. Chi-squared distance and metamorphic virus
detection. Journal of Computer Virology and Hacking Techniques, 9(1):1–14, 2 2013.

[73] Vector 35. Binary Ninja. https://binary.ninja/. last accessed 30th July
2021.

[74] Maximilian von Tschirschnitz. Library and function identification by optimized
pattern matching on compressed databases: A close to perfect identification of known
code snippets. In Proceedings of the 2nd Reversing and Offensive-Oriented Trends
Symposium, ROOTS ’18, pages 1–12, New York, NY, USA, 11 2018. Association for
Computing Machinery.

[75] Shuai Wang and Dinghao Wu. In-memory fuzzing for binary code similarity analysis.
In Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, pages 319–330. IEEE Press, 10 2017.

[76] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. Neural
network-based graph embedding for cross-platform binary code similarity detection.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’17, page 363–376, New York, NY, USA, 10 2017. Association
for Computing Machinery.

[77] Hongfa Xue, Shaowen Sun, Guru Venkataramani, and Tian Lan. Machine learning-
based analysis of program binaries: A comprehensive study. IEEE Access, 7:65889–
65912, 05 2019.

[78] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. Order
matters: Semantic-aware neural networks for binary code similarity detection. In The

59

https://github.com/tensorflow/tensorflow/blob/876fc8dc4f40c75914dbfcb0a809feaf81be7412/tensorflow/examples/tutorials/word2vec/word2vec_basic.py
https://github.com/tensorflow/tensorflow/blob/876fc8dc4f40c75914dbfcb0a809feaf81be7412/tensorflow/examples/tutorials/word2vec/word2vec_basic.py
https://github.com/tensorflow/tensorflow/blob/876fc8dc4f40c75914dbfcb0a809feaf81be7412/tensorflow/examples/tutorials/word2vec/word2vec_basic.py
https://binary.ninja/

Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, volume 34 Issue 1, pages
1145–1152. Association for the Advancement of Artificial Intelligence (AAAI), 4
2020.

[79] Yijia Zhang, Hongfei Lin, Zhihao Yang, Jian Wang, and Yanpeng Li. Hash subgraph
pairwise kernel for protein-protein interaction extraction. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 9(4):1190–1202, 7 2012.

[80] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang.
Neural machine translation inspired binary code similarity comparison beyond
function pairs. In Proceedings of the 2019 Network and Distributed Systems Security
Symposium (NDSS). Internet Society, 2019.

60

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Control-flow graphs
	Obfuscation
	Optimization
	Machine learning
	Open-source software tools

	Related Work
	Approaches
	Comparison
	Tools

	Implementation
	Approaches
	Implementation
	Open-source software tools implementation

	Evaluation
	Methodology
	Preparation
	Repository
	Results
	Time
	Hyperparameters

	Conclusion
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Bibliography

