
Firmware Re-Hosting
An Evaluation and Verification of FirmAE

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Computer Engineering

by

Sebastian Dietz
Registration Number 11816257

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Assistance: Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik, BSc

Christian Kudera, BSc MSc
Michael Pucher, BSc MSc

Vienna, 25th October, 2022
Sebastian Dietz Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Sebastian Dietz

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 25. Oktober 2022
Sebastian Dietz

iii

Abstract

Firmware re-hosting has been getting more attention as its use cases in developing
embedded systems and security analysis are invaluable. In this thesis, we compare five
state-of-the-art tools based on the properties ideal firmware re-hosting solutions must
have and verify the results of the firmware emulation framework FirmAE. FirmAE is a
fully automated dynamic analysis framework for Linux-based systems and extends the
Firmadyne framework by implementing heuristics based on failure case analysis. We
validated the published results using the publicized dataset and constructed a new set
consisting of images from the top vendors on home networks. The firmware collection
was then used to evaluate the overall emulation success rate. In addition, the impact of
each arbitration technique was assessed. Our results show that FirmAE increases the
emulation success rate of Firmadyne from 3.08% to 32.3%. Regarding the impact of each
arbitration, the categories network and boot seem to have the most influence, reducing
the emulation success rate by an average of 24% and 20% when disabled. NVRAM
arbitration seems to be the least important, reducing the rate by about 4% across the
board.

v

Contents

Abstract v

Contents vii

1 Introduction 1

2 Background 3
2.1 Embedded Systems . 3
2.2 Firmware . 4
2.3 Peripherals . 4
2.4 Device Classification . 5
2.5 Emulation . 6
2.6 Analysis Techniques . 7
2.7 Re-hosting . 7

3 State of the Art 9
3.1 Surveyed Frameworks . 9
3.2 Challenges . 12
3.3 Comparison . 20

4 FirmAE Verification 23
4.1 Problem Statement . 23
4.2 Experimental Setup . 24
4.3 Evaluation . 25

5 Conclusion 33

List of Figures 35

List of Tables 37

Bibliography 39

vii

CHAPTER 1
Introduction

The attack surface also rises with the ever-increasing number of connected embedded
devices. As a result, new attacks and malware are being discovered frequently[1]. As
many of these devices store sensitive information, protecting embedded systems from
malicious actors is of utter importance. In the past, emulation was used during the
development of embedded devices to reduce the need for physical hardware. This gave
hardware developers a cost-efficient way to test the behavior of their systems. Just as in
development, emulation can be used in security research to gain a better understanding
of a given system. In addition, it enables new ways in which security researchers can
interact with a target, which would have been impossible on a physical machine. Being
able to interact with the board on various abstraction layers dramatically accelerates
the discovery and mitigation of vulnerabilities in Internet of Things (IoT) devices [2].
Furthermore, re-hosting can be used by IoT honeypots [3] in order to learn more about
upcoming cyber attack trends.

However, previous studies have shown that there are still some unsolved problems related
to firmware re-hosting, and a one-size-fits-all solution is hard to achieve [2]. Therefore,
we looked at five different state-of-the-art firmware re-hosting frameworks and compared
them by discussing how each tool tries to overcome these challenges. In addition, we
evaluated them over the properties an ideal firmware re-hosting solution must have and
discussed the different approaches each of the tools takes. One of those tools is FirmAE.
FirmAE is an extension of Firmadyne and claims to increase the emulation success rate
from 16.28% to 79.36% by implementing five different arbitration techniques. Kim et al.
[4] states that their heuristics were developed to handle failure cases empirically and may
not apply to new devices and configurations. Still, the sample set used in the research
seems deliberately chosen to reflect their research results. For example, firmware images
from the manufacturer NETGEAR have an emulation success rate of 93.80% while being
part of 24.3% of all evaluated images. Therefore, we constructed a new sample set to try

1

1. Introduction

to reproduce the results of their study. For this, we first verified the research results of
Kim et al. [4] by using their published firmware samples. Next, we constructed a new
collection of images containing the top manufacturers used in home networks using the
results of Kumar et al. [5]. The newly created dataset is then used to evaluate FirmAE
and to gain more insight into the success rate as well as the impact each arbitration has.

We start in chapter 2 by briefly introducing the terminology that comes with the
topic and discussing different re-hosting approaches. In the next chapter, we continue by
introducing the surveyed frameworks and discussing some issues with firmware re-hosting
and emulation. We compare them in section 3.3 based on the properties introduced by
Gustafson et al. [6], as well as how they handle each challenge. We then proceed with
the verification of FirmAE, where we begin by describing our experimental setup and
the arrangement of the firmware samples. We finish by discussing each of our results and
a summary in section 5.

2

CHAPTER 2
Background

Before getting into the current problems of firmware re-hosting, we would like to give an
overview of the targets, methods, and technologies this research field has to work with.
Mainly, we provide the necessary background knowledge for the remainder of this thesis.

2.1 Embedded Systems
Embedded Systems can be found in anything the general public calls ’electronics’. From
various commercial off-the-shelf (COTS) devices such as printers, home appliances, pe-
ripherals, and smartphones, to less consumer-oriented systems such as video surveillance
systems, supervisory control, medical implants, military systems, and programmable
logic controllers (PLCs) [7].

Because of their broad application, a general and precise description of an embed-
ded system is hard to define. In addition, embedded systems vary wildly in terms of
hardware, computing power, purpose, and costs. Making a concrete definition even
harder. In the context of this thesis, we adopt the idea of Muench et al.[7] that embedded
systems differ from modern general-purpose computers in two distinct points:

• Embedded systems are designed to fulfill a special purpose

• Embedded systems often interact with the physical world through a number of
peripherals connected to sensors and actuators.

It is important to note that an embedded system can either be self-contained or consist of
several embedded devices. For reasons of simplification, we will use the term embedded
systems interchangeably with embedded devices, as the proposed solutions focus on single
device re-hosting rather than interconnected systems.

3

2. Background

2.2 Firmware
Muench [7] defined the term by stating that firmware is the software needed by embedded
systems in order to carry out a specific task. Because the terms software and firmware
are so similar, Muench distinguished them in three distinct points:

• First, firmware directly interacts with the underlying hardware, while traditional
software uses application programming interfaces (APIs), libraries, or abstractions
of the target operating system.

• Second, firmware is mostly stored in read-only memory (ROM) or non-volatile
memory chips. Therefore, firmware is normally installed by the manufacturer rather
than the user.

• Third, Muench stated that well-defined executable formats, for example, as seen on
desktop systems, are the exception. Firmware mostly comes in one complete binary
or ’blob’ file, which contains all the information to ensure the device’s functioning.
Data, code, and metadata are often interleaved, and the entry point address used at
the execution’s start may be hardcoded inside the firmware such that the system’s
processor can directly access it.

Another approach would be to see firmware as the art and the technique of transforming
hardware (logic systems) into software (programs) and vice versa [8]. While this artistic
definition of Daniel Mange certainly holds, we will use the interpretation of Muench for
this thesis instead.

2.3 Peripherals
Peripherals are responsible for input/output as well as the general interaction with
the physical world [7]. Peripherals can be distinguished between on-chip and off-chip
peripherals. If manufacturers combine the central processing unit with several peripherals,
the device’s peripherals are called on-chip. Such devices are also named System-on-Chip
(SoC). The distinction between on-chip and off-chip is essential, as systems with off-chip
components need special on-chip peripherals, such as Universal Synchronous/Asyn-
chronous Receiver/-Transmitter (USART), to communicate with the off-chip hardware.
According to Muench [7], even though the interaction between the CPU and on-chip
peripherals is dependent on the CPU itself, they usually fall into one of the following
categories:

Memory-Mapped Input/Output (MMIO). The hardware registers of a peripheral
are directly mapped into the system’s memory space. That means that the data, con-
figuration, and status, can be accessed by reading and writing to special memory locations

4

2.4. Device Classification

Port-Mapped Input/Output (PMIO). Here, the peripherals are mapped onto
ports on the embedded system. With special instructions, such as in and out, the
Instruction Set Architecture (ISA) enables communication with those ports.

Interrupt Requests (IRQs). Interrupts are being issued by the peripheral and
notify the CPU that an event needs its attention. When an IRQ arrives, the processor
saves its current state and changes execution to the interrupt handler (ISR). When
completed, the CPU restores its previous state and continues. Nowadays, CPUs often
implement a more complex interrupt service routine, which allows nesting of interrupts,
assigning priorities to them, and selectively disabling and enabling them [7].

Direct Memory Access (DMA). Allows the exchange of data while the CPU can
execute other tasks. This method requires the presence of a dedicated DMA controller.
The DMA controller is a specialized hardware component and peripheral on its own,
capable of transferring data between other peripherals and main memory independent of
the CPU. In most cases, the DMA controller notifies the CPU about completed data
transfers by issuing an interrupt. [7]

2.4 Device Classification

As we have stated multiple times in previous sections, the sheer diversity found in
embedded systems is enormous. While we have already defined the term embedded
systems, the introduced definition still cover various devices. These systems could be
classified by several aspects, such as cost, computing power, or the extent of environmental
communication. However, the challenges and techniques in emulating or re-hosting these
embedded devices vary and may not translate well from one system to another. Hence,
we will categorize them by the type of firmware they execute. These classifications are
based on Wright et al. [2] and Muench [7]:

General Purpose Embedded Systems (GPES). These systems are often retrofitted
to the embedded system space. These systems will often run on a Linux OS Kernel
with a modified lightweight userspace environment, such as busybox or uClibc. Custom
peripherals or external hardware is often carried out via device drivers. Because of
the abstractions provided by the operating systems, this class makes a great target
for firmware re-hosting frameworks. Such systems include real-time Linux, embedded
Windows, and Raspberry Pi [2].

Special Purpose Embedded System (SPES). are systems with custom OS specifi-
cally developed for the embedded world. As these devices are often commercial products,
the operating system is usually closed-source. While advanced processor features such as
a Memory Management Unit (MMU) may not be present, a logical separation between the
kernel and userspace still exists. However, this line is often blurred in reality, which can

5

2. Background

add difficulty when trying to emulate such kind of system. In addition, many emulation
techniques from the personal computer space do not work, and emulation must start
from scratch. Single-purpose user electronics, such as LTE modems or DVD players,
are examples of these systems and usually run on operating systems such as uClinux,
ZephyrOS, or VxWorks.

Bare-Metal Embedded Systems (BMES). These devices do not have a typical
separation of the OS and the firmware, resulting in a so-called "monolithic firmware".
The code running on such targets can be completely custom and is often based on a
single main loop and interrupts from the peripherals. These approaches can often be
found in microcomputers (e.x, Arduino, STM32), wifi cards, or GPS dongles.

2.5 Emulation

Emulation is the process of imitating a system on another device. Often emulation gets
confused with simulation. Simulation can sometimes be encountered in scientific modeling,
but in this context, simulation is another technique used to model the internals of a
system. To be specific, simulation is the process of modeling a system by implementing
parts of the internals in software. In contrast, emulation is the process of modeling the
system by replacing the internals. Nowadays, the distinction is mostly unimportant, and
the surveyed frameworks either use the terms interchangeably or refer to their approach
as emulation based. When it comes to emulators, one of the first popular ones was Simics
[9]. In the early 2000s, the tool was created to emulate multiple architectures, provide
scripting and configuration management, and automated debugging. In addition, Simics
is designed around a high instruction level fidelity, which allows for interrupt testing
between any pair of instructions. On the contrary, tools like QEMU [10] give up some of
their accuracies in order to improve emulation speed. QEMU emulates by translating
entire blocks of instructions to the host systems instruction set. This allows for a better
performance as QEMU can cache these basic blocks and does not need to check for
interrupts after each instruction. Because of its open-source license and support for many
architectures and peripherals, QEMU has become one of the staples in academia and
for industry professionals. This is also the reason why QEMU and Simics are two of the
most widely used emulators. [2]

Fidelity. In the context of this thesis, the expression emulation fidelity will some-
times occur. The term got introduced by Wright et al. [2] and describes how closely
execution in the emulator can match that of the physical system. Emulation fidelity can
be categorized into the following levels from 1 to 7: Blackbox, Module, Function, Basic
Block, Instruction, Cycle and Perfect. When observing a system with Blackbox fidelity,
the same external behavior can be observed as the real system, while internally, it may
not execute the same instructions. At the Module level, some parts of the firmware are
executed unmodified, whereas others could be completely replaced. At Function, it can
happen that whole functions need to be replaced for emulation success. Similar, Basic

6

2.6. Analysis Techniques

Block and Instruction accurately emulate at the basic block or instruction layers. The
Cycle level faithfully emulates the instruction cycle. Perfect fidelity would mean that the
emulation behaves exactly like the actual hardware.

2.6 Analysis Techniques
Recently analysis techniques like fuzzing or symbolic execution have been adopted by
re-hosting solutions to infer hardware peripherals [11][12]. Because these methods are
integrated into some frameworks, it requires some familiarity to discuss these topics.
Therefore, we do not go into depth in these areas but rather give a brief overview and
explanation of these techniques.

Fuzzing. The goal of fuzzing is to stress the target with random input such that
unexpected behavior like crashes or resource leaks occur. Because of that, fuzzing is
often used as a bug and vulnerability-finding technique. Furthermore, in the context of
emulation, fuzzing can be used to improve the code exploration of the firmware or even
to learn about unknown peripheral access [2].

Symbolic Execution. Instead of supplying the program the normal inputs, one
supplies symbols (i.e., variables) representing arbitrary values. The execution proceeds as
normal except that values may be symbolic formulas over the input [13]. When solving
these symbolic formulas, a set of constraints defining the value the input must have to
reach a specific part of the program is returned. This means that these symbols can be
used to describe all program execution paths than can be executed. [2]

Concolic Execution. Concolic Execution is when the execution engine switches
between using symbolic and concrete values during execution. This technique reduces
the usual huge, or often infinite, search space of traditional symbolic execution [14].
In terms of firmware re-hosting and emulation, code found on embedded systems is
sometimes dependent on the return value of peripheral access. By solving these hardware
dependencies in symbolic space, researchers are able to reach code paths that would not
be reachable otherwise. [2]

2.7 Re-hosting
Re-hosting is described by Wright et al. as the act of executing a binary on a host system
using system emulation, which would otherwise need to be run on specific hardware [2].
Re-hosting can be achieved in various forms. Therefore, we present three options that
may be available to the practitioner and discuss each method’s advantages, disadvantages,
and liabilities.

7

2. Background

Full Firmware Re-hosting. Full re-hosting tries to build a fully-featured emulator from
firmware and the metadata information from either the embedded system or firmware
sample. Therefore, complete system emulation can be achieved without the need for
physical hardware. While this approach might look promising, Wei Zhou et al. [12]
showed that these emulation types frequently fail to execute complex firmware samples
properly. For example, they stated that P2IM’s [15] heuristic of guessing the correct
response to a peripheral read request is impractical when considering the large search
space. Further, some frameworks might come with dependencies that only a handful of
firmware might supply. For instance, firmadyne [16] can only emulate firmware that runs
on GPES Systems with a Linux OS Kernel.

Partial Firmware Re-hosting. This approach attempts to construct an emulator from
the firmware only. That means that because no additional auxiliary information about
the peripherals is being used, the derivated emulator is not guaranteed to be complete,
and only a handful of peripherals are available [11].

Physical Re-Hosting. Here, the binary code from a device is relocated to a new,
more test-friendly device. If the new device is cheaper and more readily available than
the original one, this may improve scalability. However, transferring the program to a
completely different system has significant difficulties. On top of that, it may be difficult
to reproduce bugs found on the original device due to the different architecture or changes
the binary transfer may have introduced [7]. Hence, bugs that were present (or not) on
the original target may not (or are) present on the new target. It should be pointed out
that physical re-hosting does not fall into our definition of re-hosting. Still, for the sake
of completeness, we wanted to include it.

Hardware-in-the-loop Re-hosting (HIDL). With the help of HIDL, it is possi-
ble to attach a software emulator to a physical machine directly. HIDL allows forwarding
the I/O between the hardware and emulator, resulting in the highest fidelity emulation
since we can directly communicate with the peripherals [11]. However, as the embedded
system needs to be available and obtainable, these hardware-in-the-loop approaches
cannot be used for large-scale re-hosting [12].

It should be noted that according to Muench [7], there is no distinction between hardware-
in-the-loop and partial firmware re-hosting. However, since the proposal of Jetset [11],
separating these two methods is necessary and valuable, as seen later in the framework
comparison section.

8

CHAPTER 3
State of the Art

In this section, we go into the details of the current problems re-hosting has to face, as
well as compare different state-of-the-art frameworks that are currently released. We start
by introducing the five frameworks and give an overview of the different approaches and
techniques these tools developed. Next, we dive into the problems firmware re-hosting
has to work with and divide them by the time they occur during the emulation process.
Here, we also discuss how each surveyed framework tries to overcome these challenges.
In the end, we compare the frameworks by evaluating them over properties that ideal
firmware re-hosting solutions must have and discuss each tool individually.

3.1 Surveyed Frameworks
Pretender. Pretender [6] records the interactions between the hardware and the firmware.
Next, their machine learning engine creates a stateful behavior model of the peripherals
and builds an emulator for this model without being dependent on the hardware afterward
[12]. To do this, Pretender [6] goes through five phases. First, traces of MMIO region
accesses get recorded. After that, the memory space boundaries of each peripheral get
located to help divide the recording into sub-recordings. Next, based on the interleaving
of interrupts with MMIO, Pretender [6] assigns each numbered interrupt event to a
peripheral group. This is used to create timing patterns for later emulation. In the
last two steps, a memory model for each memory location is created, and the way of
system input is getting specified. If an MMIO region gets accessed during emulation, the
pre-recorded traces get searched for accesses. The model behaves exactly like the trace if
feasible access is found, resulting in either a returned value (read) or a written register
(write).

9

3. State of the Art

Firmadyne. Firmadyne [16] is a fully automated dynamic analysis framework for Linux-
based General-Purpose Embedded Systems. While the platform comes with its own
firmware web scraper, extractor, and dynamic analysis engine, we will only evaluate the
emulation solution. Firmadyne [16] uses QEMU [10] for full system emulation. To boot
the firmware, firmadyne [16] uses its modified kernel image and user-space libraries to
satisfy the required conditions. For example, about 52.6% of all extracted firmware images
access a hardware non-volatile memory (NVRAM) location using a shared library [16]. As
these memory locations often contain device-specific configurations, access to such values
must be possible. To solve this issue, firmadyne [16] hooks NVRAM-related functions,
such as nvram_get and nvram_set, to allow reimplementing this interface in userspace
without emulating hardware-specific peripherals. Aside from NVRAM, hardware-specific
peripherals such as watchdog timers or additional flash storage devices may be expected
by the firmware image [16]. Normally, such functionality would be implemented using
device drivers in kernel space and could therefore be intercepted by firmadyne’s [16]
custom kernel image. However, as some device manufacturers do not follow good software
engineering practices, Firmadyne [16] modified sixteen bytes in QEMU’s [10] source code
to respond to user-space implementations. In addition, a 60-second initial learning phase
is used to learn about the required networking configuration. In particular, firmadyne
[16] keeps track of assigned IP addresses, IEEE 802.1d bridges, and IEEE 802.1Q VLAN
tagging. The learned information is then used to build a more accurate QEMU [10]
instance for the system.

FirmAE. FirmAE [4] extended the firmadyne [16] emulation framework by implementing
additional heuristics and so-called arbitrated emulation. The goal of arbitrated emulation
is to ensure sufficient high-level behavior to allow dynamic analysis on user-space pro-
grams [4]. Kim et al. [4] implemented this by analyzing the high failure rate of firmadyne
[16] and coming up with different heuristics that each increase the emulation rate of the
dataset. Firstly, they improved the success rate by implementing boot arbitrations. They
discovered that because some firmware has unusual init paths, the kernel could not find
the initialization program and panicked. However, as the init path is often found in the
kernel command line strings, extracting the path was easily manageable by a custom-
written script [4]. Other boot failure cases occurred due to missing files or directories.
To solve this issue, FirmAE [4] extracts all path-like strings from executable binaries
and prepares the file system based on these paths. Secondly, to allow dynamic analysis,
the network needs to be configured properly such that the analyst can communicate
with the re-hosted system. By running the guest system twice, FirmAE [4] is capable
of acquiring the required network configuration from the system’s initial startup logs
and configuring VLAN, TAP interfaces, and iptables accordingly [4]. However, not all
firmware images contain such information. Therefore, FirmAE [4] forcefully configures
the Ethernet interface, eth0, of such images to a default config. Thirdly, FirmAE [4]
extends Firmadyne’s [16] already present approach of initializing present NVRAM files by
extending the list of known values per manufacturer. Lastly, small changes, for example,
executing the webserver manually, increased the emulation success rate as well.

10

3.1. Surveyed Frameworks

Jetset. The motivation behind Jetset [11] is that for analysis, most of the time, only a
small part of the system needs to be emulatable. Further, full re-hosting often comes
with considerable challenges. Therefore, Johnson et al. [11] idea were to use symbolic
execution to infer the correct behavior the firmware expects from peripherals. To do
this, Jetset [11] requires the executable code, the memory layout of the system, the entry
point address, and a so-called goal address. The memory layout and the entry point
address can often be found in the datasheet of a system. The executable code is found
in the firmware image, and the goal address specifies the instruction the analyst wants
the emulator to reach. Jetset’s operation follows a two-stage principle; First, Jetset uses
symbolic execution to learn about the system’s expected behavior. Next, the output of
the first stage is used to build an appropriate QEMU [10] device. These two stages are
called peripheral inference and periperhal synthesis. During the inference stage, Jetset
[11] executes the code in a custom symbolic execution environment [11]. As long as the
code is executed in this environment, all reads from MMIO (see section 2.3) addresses
are handled as symbolic. This means that when the goal address is reached, a set of
constraints leading to this address is available [11]. To keep the number of explorable
paths small, Jetset [11] uses guided symbolic execution. Here, a distance is calculated
from each basic block of the control flow graph to the goal. This helps branch decisions,
as Jetset [11] will always use the next basic block with the lowest distance to the goal
address. Because some embedded systems might need interrupts to reach the goal address,
Jetset [11] periodically executes all Interrupt Service Routines (ISR). When finished, Z3
[17], the default SMT solver used by angr [18], is used to generate appropriate values for
each read that, in the end, allows building a synthetic device. This device answers each
MMIO read with a concrete value that guides the execution to the goal address [11].

µEmu. µEmu [12] tries to find bugs in code related to improper input handling of
Input/Output Interfaces. µEmu [12] tries to emulate those interfaces by automatically
generating appropriate responses. A response is considered appropriate when the response
passes the firmware’s internal checks so that the execution reaches a usable state for
practical security analysis [12]. For each firmware, a knowledge extraction phase is run.
During this phase, a knowledge base about how to respond to peripheral register access
is built. With the help of symbolic execution, unknown peripheral register accesses get
logged and, when influencing a branch decision, calculated via a constraint solver. When
solved, the appropriate value gets cached in the knowledge base (KB). The cached values
are used to help the symbolic execution engine in deciding the next branch target. To
make this more efficient, µEmu [12] adopts a tiered caching strategy. These tiers get
accessed via matching rules. When an unknown peripheral gets read, a matching rule
finding as many similar peripheral accesses as possible is executed. If the cached values
are wrong, µEmu [12] rejects them and upgrades the matching rule for the corresponding
peripheral register [12]. After exploring all paths, µEmu [12] is ready for emulation.
Should a register of a custom-made peripheral be accessed, the knowledge base gets
referred, and an appropriate response value is returned to the emulation [12].

11

3. State of the Art

3.2 Challenges
As firmware often comes in the form of a raw binary blob, the way this blob is handled lies
entirely in the hands of the processor’s hardware. This way of handling will consequentially
vary widely from system to system [6]. Without this abstraction, even unpacking
or extracting the firmware might bring challenges. The consequence of this missing
abstraction is that the execution environment for firmware is the hardware itself [6]. That
means that for re-hosting firmware, we need to break down the hardware we want to
emulate. For that, two unique categories can be pointed out. We base our approach on
the work of Gustafson et al. [6] while summarizing on-chip and off-chip peripherals into
one group:

• CPU core For this, the instruction set and the interrupt controller need to be emu-
lated.

• Peripherals These include on-chip and external or off-chip peripherals. Here we find
timers, bus controllers, serial ports, GPIOs, Inter-Integrated Circuit (I2C), or Serial
Peripheral Interfaces (SPI). As explained in section 2.3 we have multiple options
for accessing these peripherals. The problem with peripherals might not be evident
as, from a programmer’s perspective, using these peripherals is an easy task thanks
to software libraries. For example, when wanting to communicate with an SPI
connected via MMIO, the code is not much different from sending and receiving
a message [6]. However, the compiled firmware goes through a complex series of
MMIO accesses. Therefore, it is challenging to observe the correct behavior of data
flow [6]. On top of this, using the same peripherals on two different CPUs from the
same manufacturer vary wildly in their memory layout and implementation, which
makes it even harder to find any indication of their layout in memory [6].

Because firmware re-hosting is a multi-stage process, categorizing the difficulties only by
hardware is insufficient. Hence, why we additionally propose the idea of Wright et al. [2]
of splitting these challenges by the time they occur in the emulation pipeline:

• Pre-Emulation

• Emulation

• Post-Emulation

Pre-Emulation consists of problems that are the requirement for emulation execution.
Therefore, overcoming these challenges enables the execution of the first instruction in
the emulator. These problems range from understanding how to configure the emulator
for re-hosting to obtaining and unpacking the firmware. Once the first instruction got
executed, problems now occur in the Emulation stage. This phase consists of two sub-
stages, namely Emulation Setup and Emulation Execution. In Setup, challenges that allow

12

3.2. Challenges

further emulator refinement can be found, whereas Execution consists of fundamental
challenges to emulation itself. Last is the Post-Emulation stage, where the re-hosting
instance gets validated and analyzed depending on the use case of the digital twin. This
thesis will mostly discuss the Pre-Emulation and Emulation stages, as these two phases
include the most important considerations when re-hosting firmware.

3.2.1 Pre-Emulation

Figure 3.1: Categorization and flow of the steps required during Pre-Emulation. Based
on Wright et al. [2]

In Figure 3.1, the flow of the Pre-Emulation stage can be observed. Each step indicates
problems that need to be addressed before going on to the next stage. At the start of the
re-hosting process, the analyst will usually have a system in mind he wants to emulate
or re-host. In some cases, the firmware must be obtained (e.g., when working on a bug
bounty or commercial closed-source hardware). Even if the firmware is available, key
information required for emulation must be identified. Therefore, all these steps before
configuring the emulator are what Wright et al. [2] defines as the Pre-Emulation stage.
The required information to begin emulation varies wildly by the emulation technique.
However, it includes obtaining the firmware, unpacking it, determining the memory
layout and the instruction set architecture (ISA), identifying the processor, analyzing
the binary, and an initial firmware analysis. [2].

Obtain Firmware. Before analyzing or re-host firmware, it is necessary to obtain
the image. The easiest way would be to download it from the vendor’s website, third-
party archives, or FTP servers. This can be done manually or automatically via web
crawling. If a physical device is present, the firmware can also be extracted via exposed
UART-, debug- (e.g., JTAG), or USB- ports from the flash memory. Even though Vasile
et al. [19] showed a high percentage of exposed interfaces, locked-down ports are still the
norm. When the ports appear to be secured, removing the memories from the board and
connecting it to a second system to dump the firmware could be a viable option. However,
removing these parts from the circuit board greatly risks damaging or even destroying the

13

3. State of the Art

hardware [2]. Regarding the surveyed frameworks, Firmadyne and FirmAE constructed
their data set by downloading firmware from vendor sites, whereas Pretender obtained
them from third-party sites. µEmu used the same data as P 2im [15] and Jetset expanded
the set of P 2im [15] with new targets.

Unpacking. Depending on how the firmware got obtained, it may be necessary to extract
or unpack the given file. Often signature matching tools such as binwalk [20] or Firmware-
Mod-Kit [21] are used. As these tools only check the file headers for pre-defined signatures,
encrypted or customized images can not be unpacked [4]. For example, images could
contain the firmware for multiple architectures, which are only compiled on the hardware
during boot-loading. Alternatively, as is the case for General Purpose Embedded Systems,
the downloaded firmware only contains the user-level application [2]. This means that the
system kernel must be obtained separately to perform full-system emulation. Frameworks
tackling this challenge are Firmadyne [16] and FirmAE [4]: Chen et al. [16] determined
through manual experimentation that the built-in recursive extraction mechanism ("Ma-
tryoshka") within binwalk was insufficient for their purpose. Specifically, this extraction
was vulnerable to path explosion and not guaranteed to terminate, especially in the pres-
ence of a false positive signature match. Therefore, they developed a custom extraction
tool using the binwalk API as a backend. The tool focuses on minimizing disk space
and runtime by terminating when the root filesystem and (optionally) kernel are obtained.

Instruction Set Architecture. After obtaining and extracting the target firmware, it
is required to determine which instruction set architecture (ISA) the firmware uses. The
emulator uses the ISA to disassemble the firmware into the correct instructions. This
includes determining the endianness (e.g., little- or big-endian) and word size. In addition
to the ISA family (e.g., ARM, PowerPC, X86, MIPS, ARM64, AVR), the ISA version is
sometimes required. Especially when working with ARM architectures, it is important
to know if the target runs on ARM with Thumb support or floating point instructions.
Most commonly, the ISA can be identified through the datasheet of the target processor.
However, static analysis techniques can be used when the target is unknown or the
datasheet cannot be obtained. An easy method would be to determine the file format by
using the file utility (e.g., ELF, PE2, Mach-O), looking at other signatures in the firmware
(e.g., encryption, compression), or extracting strings in the firmware to guess the ISA. A
more sophisticated approach would be to use tools like binwalk [20]. Binwalk uses the
capstone disassembler and tries to disassemble the firmware for various types of ISAs.
If the instruction threshold of the given architecture (default is 500) is reached, then
the heuristic gives a good guess for the ISA [2]. Of the compared tools, only Firmadyne
and FirmAE try to determine the ISA with the help of binwalk, whereas all other tools
expect the ISA to be known beforehand to work correctly.

14

3.2. Challenges

Base Address. The base address is the address at which the firmware should be loaded.
Similar to the instruction set architecture, the base address can sometimes be found in
the target datasheet. The base address can be found in the linker scripts if the build
tools are available. Because determining the base address is fundamental to many binary
analysis techniques, a few papers have focused on automatically finding these addresses.
Firmalice [22] exploits jump tables to find the correct loading position. First, the binary
blob gets scanned for consecutive values that differ only in their two least significant
bytes (LSB) to find jump tables. Next, all memory locations from which the indirect
jumps are read get identified. Then, the binary gets relocated such that the maximum
number of these accesses is associated with a jump table [22].
Firmadyne and FirmAE try to mitigate this problem by implementing a custom kernel.
The kernel is passed to qemu, which bypasses the need to determine the base address.
However, this reduces emulation fidelity and loses the original kernel. All other tools
require the base address to be known.

Entry Point. After the base address has been found, specifying the entry point
is the next step. For some binary formats, like ELF, the entry point information can
be directly encoded into the file. When working with binary files without metadata or
symbols, the root node of any weakly connected component in the call graph could be
treated as an entry point. However, for this, the ISA needs to be already known. Because
this call graph analysis often results in multiple entry points, each potential candidate
must be verified by hand. [2]
When it comes to the surveyed works, Firmadyne and FirmAE both circumvent this
problem by using a custom kernel. In the case of Jetset, µEmu, and Pretender, the entry
point needs to be specified. In addition, Jetset requires a special “goal” address, which is
used as a stopping condition for the emulation. [11]

Memory Layout. Determining the Memory Layout is of great importance. RAM,
Flash, and MMIO might not be available without the layout. If the system is known, the
datasheet can be consulted. Sometimes particular files like CMSIS-SVD files for ARM
can be used to reverse engineer the memory layout. If all fails, a trial and error method
is required. For this, the practitioner gives the target significantly more memory than
the physical system and tries to determine where code and external peripherals in the
memory lie by observing memory read and writes. These interactions are then mapped
into an MMIO wrapper. For all compared frameworks, the memory layout needs to be
specified. However, FirmAE and Firmadyne automatically perform the routine described
above for mtd devices with the help of nandsim.

Verification. While this stage is not necessary, trying to verify the obtained infor-
mation before moving on to emulation is certainly a good idea. The analyst can often
use disassembly to ensure the correct ISA. In addition, a quick control flow graph can be
generated to give weak affirmation that the base address and entry point address are
correct. Because disassembly is an iterative process, the practitioner can modify the

15

3. State of the Art

input between iterations to tweak the ISA, processor, base address, memory layout, and
entry point. The practitioner may also analyze multiple firmware for the same system
and aggregate the results to solidify the variables. [2]

3.2.2 Emulation

Ideally, after gathering all required information in Pre-Emulation, the base emulator
already supports the target system. If not, a new specification has to be created. In the
case of QEMU [10], documentation on how to add additional support is available. In
order to reach a high emulation fidelity, additional challenges must be overcome. These
challenges get split into two sub-categories - setup and execution. Emulation setup
problems usually occur when the emulator is stopped or paused, whereas emulation
execution challenges appear while the emulator is running. Other than in pre-emulation,
the challenges faced in the emulation phase are generally not linear but rather occur in a
different order depending on the re-hosted firmware. [2]

Setup

Here, the practitioner needs to handle the configuration, external interaction (periph-
erals), and memory. This stage is often iterative, as with each emulation execution,
more knowledge about the firmware operation and its dependencies to peripherals and
memory are gained. The knowledge can then be used to refine the configuration until
the researcher reaches the emulation fidelity of his choice. The problems discussed in
this section are what we believe are the biggest challenges in firmware re-hosting and
should therefore be handled with utter importance.

Peripherals. Because of the sheer amount of different peripherals and vendors, it
is doubtful that the base emulator implements the peripheral used by the firmware. In
section 3.2.1, we already talked about determining the memory map such that we learn
where the peripherals are located in the memory. However, the memory map only tells
us where the peripherals lay in memory, not how or when they get accessed. Dynamic
analysis can be used to gain some of this information depending on the target type. If the
target system is a GPES running on a Linux kernel, debugging utilities such as strace
can be used to understand peripheral interaction. This interaction can then be built into
a peripheral model such that the target can interact with it. Depending on the fidelity of
the peripheral model, i.e., the extent to which the peripherals are modeled, the amount
of code executed may increase, resulting in even more peripheral accesses that can be
observed and modeled.
In addition to modeling, peripheral interactions can be handled by forwarding them
to the original physical target with the help of a hardware-in-the-loop approach or by
patching the firmware and bypassing the interaction. Most of the time, performing a
HITL technique will result in the highest emulation fidelity. However, the re-hosted
solution will not be able to be parallelized as it is dependent on the physically connected
device. Furthermore, HITL has significant problems synchronizing the states between

16

3.2. Challenges

the emulator and the hardware. A simple example of such an issue would be if a timer
generates an interrupt, resulting in the hardware being stuck in the timer’s ISR. At
the same time, the emulator does not have a timer and consequently keeps executing
instructions and not processing any interrupts. Equally important are the current ef-
forts of introducing machine learning to overcome this challenge. While the results of
current machine learning approaches, such as Pretender [6], only show proof of concept
on simple peripherals like UART ports, the idea of a high-fidelity automatic solution
is very appealing. However, it is still unclear if this approach will work for arbitrary
peripherals in the future [2]. When using a fuzzer instead, device-specific information is
not required but may not achieve a high enough emulation fidelity for the researcher’s use
case. Still, there are papers published which use a fuzzer in combination with symbolic-
and concolic-execution to find vulnerabilities and bugs in re-hosted firmware.
Of the surveyed tools, Jetset and µEmu use symbolic execution to build appropriate
responses for hardware interactions. Pretender uses a hybrid approach of HIDL and
machine learning to depict MMIO peripherals. Firmadyne and FirmAE assume that the
peripherals are part of their core kernel, and the emulator crashes otherwise.

Memory. With the help of emulators, it is possible to taint memory access which
allows notifying the user about data access or execution. Most of the time, the practi-
tioner can also specify the memory regions and types of interactions such as RAM, Flash,
and MMIO. If the used base emulator does not have memory configuration support,
providing an abstraction in software is a feasible option. In addition, forwarding memory
access to the actual hardware, such as in projects like PROSPECT [23], can also work.
[2]
In Firmadyne and FirmAE, memory is managed by their kernel, and only a portion
(mtd layout) of memory can be configured by hand. Because Pretender requires the
basic memory layout and MMIO regions to be known, configuring and observing memory
access is possible by design [6]. The same argument holds for Jetset [11]. For µEmu, it is
essential to specify the memory via a configuration file [12].

Hardware. Setting up the Hardware is most of the time only relevant when using
a hardware-in-the-loop (HITL) for firmware re-hosting. This includes initializing the
states of the emulator and the physical device and specifying how and when to forward
interactions to the hardware. Sometimes this may also include the usage of delays or
other specialized hardware to synchronize states or solve other hardware-related problems.
[2]
As all surveyed frameworks do not use HITL, these problems are irrelevant. However, in
its initialization phase, Pretender uses hardware forwarding to learn about the target’s
memory layout, but the paper did not state any timing or hardware-related problems [6].

Missing Code. When obtaining the firmware, sometimes the firmware can be in-
complete. Reasons for that could be that the sample is a partial firmware update,
unsuccessful unpacking, wrong specified entry point, or even patched out functionality

17

3. State of the Art

by the bootloader. In some cases, it may be possible to patch out the missing references
to the code and still achieve sufficient emulation fidelity. However, often missing code
can make re-hosting unfeasible. [2]
For all examined tools, firmware with missing code requires a manual solution.

Function Identification. When working with an emulation fidelity at Function level,
identifying the functions is necessary. According to Wright et al. [2], this problem is not
an easy task, and a plethora of research is still actively trying to overcome it. Still, some
techniques could help determine certain functions, like using IDA FLIRT signatures or
Hardware Abstraction Library (HAL) calls. [2]
Of the surveyed works, all tools do not need to overcome such problems as they all
operate on a different emulation fidelity level than Function.

Execution

As already mentioned, Execution deals with fundamental problems related to emulation
itself. Because of that, we will discuss the following points not concerning the examined
frameworks but in conjunction with the base emulator they use. For example, Firmadyne,
FirmAE, µEmu, Pretender, and Jetset use QEMU as base emulators. Therefore, this
section will primarily be an in-depth look at QEMU [10].

Register allocation. Every architecture uses different registers and conventions. Emula-
tors need to represent these registers somewhere in their process. On most base emulators,
the target registers get mapped to arbitrary memory, and only a few temporary variables
get stored in host registers. QEMU, on the other side, uses a fixed register allocation.
This means that the target CPU registers get mapped on a fixed memory address or host
register. The advantage of this method is simplicity and portability. [10]

Condition code optimizations. In order to achieve good performance, QEMU uses
a special technique called “lazy condition code evaluation“ to emulate CPU condition
code. For example, the x86 architecture uses an eflags register to store the outcome of
a condition. Instead of computing the condition codes after each instruction, QEMU
stores one operand, the result, and the type of operation, which allows the recovery of all
corresponding condition codes if the next instruction needs them. [10]

Direct block chaining. As mentioned in Section 2.5, QEMU translates the tar-
get code to host code up to the next jump or instruction, modifying the static CPU
state in a way that cannot be deduced at translation time. These basic blocks are called
Translated Block (TB). Because of that, determining where the next TB lies is essential.
QEMU uses a simulated Program Counter (PC) and other information of the static
CPU state to find the following TB using a hash table. If the next TB has already been
translated, a jump is issued. Otherwise, a new translation is started. For common cases
like an indirect jump, QEMU can patch the TB directly so that the block chaining does
not produce overhead. [10]

18

3.2. Challenges

Memory Management. QEMU supports a software MMU which allows the vir-
tual to physical address translation to be done at every memory access. To optimize the
performance, a translation cache is used. If the emulated target does not access an area
reserved by the host system, QEMU can also be configured to use the mmap system call.
However, this mode seems to be deprecated as it needs a patched target OS and the
security risk of the target being able to access the host QEMU address space. In order to
avoid discarding the TB each time the MMU mapping change, the translated block get
indexed by their physical address. However, in terms of block chaining, the connection
between TBs still needs to be reset as the physical address of the jump targets may
change. [10]

Self-modifying code and translated code invalidation. Normally, in the case
of self-modifying code, the CPU issues a special code invalidation instruction that notifies
the cache that the code has been modified. However, on some architectures like x86, no
cache invalidation instruction is specified. QEMU handles these cases by write-protecting
the host pages corresponding to the TBs. If write access is made to these pages, QEMU
invalidates all the translated code in a page and enables writing to it, allowing for the
code to be rewritten. When using the software MMU mode, invalidating is made more
efficient by using a bitmap to only change the relevant section of the page. This avoids
invalidating the complete TB when only data is modified on the page. [10]

Hardware interrupts. In QEMU, hardware interrupts are not checked after each
instruction. Instead, the user calls a specific function to notify that an interrupt is
pending. The function call resets the current TB chain, which ensures that the execution
will return to the main loop of the CPU emulator. Afterward, the main loop executes
the corresponding ISR. [10]

Timing Constraints. QEMU may not be the best choice if the practitioner’s re-
search question includes timing-related topics. While it will be faster, the execution
time is non-deterministic, which may make it unsuitable as a base emulator when timing
guarantees are required. In many cases, timing is closely related to the interrupt handling
of timers or watchdogs. Interrupts from these sources often need some special triggers or
timing implementation in the base emulator. [2]

Multi-Threading. When multi-threading is enabled on a system, the application
that uses multiple threads may use semaphores for inter-process communication, but this
requires that the emulator allows multiple threads to run simultaneously. While QEMU
can emulate such systems, because of its design, the threads will only be able to interact
with each other at the end of each translated block. QEMU can overcome this problem
by setting break-points at every instruction, which tricks QEMU into thinking that each
instruction is a basic block. However, this will drastically reduce the performance of the
tool. [2][10]

19

3. State of the Art

3.3 Comparison

To compare the state-of-the-art tools even further, we want to introduce the four re-
quired properties for an ideal analysis re-hosting system developed by Gustafson et al. [6]:

• Virtual. The system should not require physical hardware. As explained in section 2.7
hardware-in-the-loop approaches inherently limit the scale of firmware re-hosting
by making the solution depend on the presence of hardware.

• Interactive. Because analysis is often the goal of re-hosting, the possibility for fuzzing
or symbolic execution must be present. For that to happen, the system’s emulated
hardware should be responsive to new input.

• Abstraction-less. In an Ideal system, software abstractions must not be required.
For instance, as explained in section 3.2 and 3.2.1, firmware is often obtained
without any format. Therefore, constraints on the firmware format greatly limit
the scope of emulatable targets.

• Automation. For each device, an ideal system should not require significant manual
effort to emulate.

All tools except Pretender [6] fulfill the property virtual. This conflicts with the evaluation
of Gustafson et al. [6]. However, this property is obviously violated as Pretender [6]
requires the presence of hardware during initialization.
When it comes to interactivity Firmadyne [16], Pretender [6], FirmAE [4] and µEmu [12],
fully implement input responsiveness. Because Jetset [11] only emulates to a given goal
address, the correct response to new input can not be promised.
In terms of abstraction, the strict requirement of a running Linux OS System limits the
scope of targeting systems enormously. Therefore Firmadyne [16] and FirmAE [4], which
is an extension of the first, are not considered abstraction-less solutions.
Lastly, let us take a look at the possibility of automation. Jetset [11] has tight con-
straints regarding its emulation requirements. Because the analyst specifies the memory
layout, entry point, and goal address need to be specified, Jetset is clearly not built
for automation. Firmadyne [16], µEmu [12], and FirmAE [4], on the other hand, only
use the available information firmware images have built-in, and therefore can easily
automate the re-hosting of firmware on a very large scale. Pretender [6] can also be
used for automatic emulation, given that the device the image should run on got already
traced. A summary of this comparison can be found in Table 3.1.

Firmadyne [16], FirmAE [4] as well as Pretender [6] try to fully re-host a given firmware.
Jetset [11] is a classic partial re-hosting tool, trying only to implement sufficient periph-
erals to emulate the target to a given instruction successfully. In the case of µEmu [12],
things are not as clear. µEmu [12] builds models for peripheral accesses that directly

20

3.3. Comparison

influence branch decisions. These models do not get emulated but are only approximated
by an SMT solved value, similar to Jetset [11]. Therefore we see µEmu [12] more of a
partial re-hosting solution.

Each tool has its own focus, benefits, and disadvantages, so comparing them only
by these properties is insufficient. For example, even though Firmadyne [16] and FirmAE
[4] might depend on the abstraction Linux OS systems bring, no other tool can achieve
such a high emulation success rate for these devices. Similar, when only a particular
function is of interest, using Jetset [11] might be the tool of choice. Another notable fact is
that not all tools currently have the support for all CPU architectures or peripherals types.
For example, pretender [6] is a proof of concept built to showcase the re-hosting ability
on ARM systems with MMIO peripherals. However, by providing a basic instruction set
emulator, creating the short interrupt recording stub, and providing the needed physical
memory access to the device to enable recording, Pretender [6] can be easily extended for
other architectures. When it comes to peripherals, Jetset [11] does currently not support
devices that perform direct memory access (DMA) to normal RAM [11]. According to
Johnson et al. [11], this has to do with how DMA’s are handled. Since the CPU does
not assist in DMA, this behavior is not observable by firmware, resulting in additional
manual assistance needed. As seen, we are currently far from a generic solution for
firmware re-hosting. Therefore, the practitioner should always select his choice based on
his intentions.

Tool Virtual Interactive Abstraction-less Automatic
Firmadyne true true false true
PRETENDER - true true true
FirmAE true true false true
Jetset true false true false
µEmu true true true true

Table 3.1: Excerpt of tools tackling the re-hosting problem

21

CHAPTER 4
FirmAE Verification

4.1 Problem Statement

During another research project concerning the emulation and re-hosting of router
firmware and their corresponding web service, we required a framework that could take
a Linux root file system and automatically host its content. As we were working with
Linux-based operating systems, we were looking for a tool that could use the abstraction
the Linux kernel offers to overcome some of the challenges emulations bring. In addition,
our research included the usage of parallelization and, therefore, could not use hardware-
in-the-loop approaches for re-hosting. Which is why we choose Firmadyne [16], and
FirmAE [4] as our frameworks of choice. FirmAE is an extension of Firmadyne and claims
that it increases the emulation success rate of Firmadyne significantly by implementing
five arbitration techniques. To be specific, Kim et al. [4] aver that their implementation
raises the success rate from 16.28% to 79.36%. However, while evaluating FirmAE for
our research, our samples returned a relatively low emulation success rate. Kim et al. [4]
states that their heuristics were developed to handle failure cases empirically and may
not apply to new devices and configurations. Still, the sample set used in the research
looks deliberately chosen to reflect their results. For example, firmware images from the
manufacturer NETGEAR have an emulation success rate of 93.80% while being part of
24.3% of all evaluated images. Therefore, we propose the creation of a new sample set
to try reproducing the stated success rate. In order to prove our hypothesis, we first
evaluate FirmAE over their published AnalysisSet, LatestSet and CamSet. Afterward,
we construct our own sample set based on the sophisticated research results from Kumar
et al. [5]. Next, we use them as input on Firmadyne and FirmAE and compare both
results in order to back or disprove their claimed ≈4.8x better emulation success rate. In
addition, we verify the impact each arbitration technique has by disabling them manually
for each set and comparing it with the published results from Kim et al.[4].

23

4. FirmAE Verification

4.2 Experimental Setup

4.2.1 Environment

All experiments were conducted on a Hyper-V server with an AMD Ryzen 5 5600X
6-Core 3.70 GHz CPU, 32 GB DDR4 RAM, and 1 TB SSD. We installed Ubuntu 20.04
with PostgreSQL 12.11 and Docker 20.10.12. For our FirmAE instance we used
commit 65e528d76e83181e9f91c51bc59008d1fd9b085d (29 Oct 2021). In order
to compare the results to Firmadyne, we executed the samples in FirmAE without any ar-
bitrations. This behaviour was configured by setting FIRMAE_BOOT, FIRMAE_NETWORK,
FIRMAE_NVRAM, FIRMAE_KERNEL, and FIRMAE_ETC to false in the firmae.config
file.

4.2.2 FirmAE Dataset

In order to test how well our setup performs, we used the published dataset from Kim et
al. [24] and tried to reproduce their findings. The set comprises 1124 firmware samples
from the top eight wireless home router and IP camera vendors. From those samples, 1079
are wireless router images, and 45 are IP camera images. The images are divided into
three datasets: AnalysisSet, LatestSet, and CamSet. AnalysisSet consists of
526 outdated images from D-Link, TP-Link, and NETGEAR. LatestSet and CamSet
were collected on December 2018. CamSet consists of 45 samples from D-Link, TP-Link,
and TRENDnet, whereas LatestSet has 553 images of all eight vendors. According to
Kim et al.[4] AnalysisSet may include multiple firmware versions per device, whereas
the other datasets have only one image per device. In addition, there is no intersection
among the datasets. To compare our results, we used the published online spreadsheet
[25] of Kim et al. [4], which includes the results of all evaluated firmware samples of their
experiment.

4.2.3 Hypothesis Dataset

The dataset used to prove our hypothesis is based on the excellent work of Kumar et
al. [5]. Their research assessed user-initiated network scans of 83 million devices in 16
million households in order to provide a large-scale analysis of IoT devices in real-world
homes. One of their results is a device landscape table that shows the five most popular
vendors per device type across eleven regions [5]. We exported the data manually and
implemented a python script that aggregates their results in order to return the highest
distributed vendors grouped by device type (e.g., routers, automation, and surveillance
devices) which is summarized in Table 4.1. The program calculates the sum of all vendor
scores per region. Due to the different devices spread across the distinct regions, we
additionally weighted the vendor score by multiplying it with its regional distribution
(See Listing 4.1).

24

4.3. Evaluation

1 vendor_data_for_device = self.vendor_distribution_per_type_and_region
[device_type]

2 for region in vendor_data_for_device:
3 region_multiplier = region_device_amount_percent[region] / 100
4 for vendor, percent in vendor_data_for_device[region]:
5 if vendor not in scores:
6 scores[vendor] = 0
7 score = percent * region_multiplier if weighted else percent
8 scores[vendor] += percent * region_multiplier
9

10 return sorted(scores.items(), key=lambda score: score[1], reverse=
True)[:limit]

Listing 4.1: Excerpt of aggregation script

In order to gain the accumulated score of all types, we iterated over all top vendors per
type and calculated the mean value of the summarized values (See Listing 4.2).

11 for device_type in device_types:
12 for vendor, score in self.get_top_vendors_for_type(device_type,

weighted, limit):
13 if vendor not in scores:
14 scores[vendor] = 0
15 scores[vendor] += score
16
17 for vendor in scores:
18 scores[vendor] /= len(device_types)

Listing 4.2: Excerpt of top vendors overall

This data was then used to gather appropriate firmware samples. The first set we
built, called RandomSet, consists of 105 randomly chosen images from D-Link, Huawei,
TP-Link, AVR, Dahua, Hikvision, Mitrastar, Sagemcom, and Technicolor. As these
images represent no particular class of embedded system and support for them is not
guaranteed, we constructed a second set named LinuxSet, which only contains firmware
samples of Linux-based systems running on either ARM or MIPS. LinuxSet consists
of 35 images from Belkin, Cisco, D-Link, Huawei, Intelbras, TP-Link, and Wdigital.
The firmware samples have been downloaded from either the manufacturer’s site and
third-party suppliers or through extensively traversing the web. As the availability of
these images varies between vendors, the selection is not evenly distributed.

4.3 Evaluation

4.3.1 FirmAE Dataset

After extracting the dataset, we used the docker implementation of FirmAE to test
the emulation success rate of the images. We used docker because it allows running
FirmAE in parallel, allowing greater execution speed. Because our setup only had 1
TB available, we needed to split the dataset into three parts. The results of each part

25

4. FirmAE Verification

Surveillance Routers Automation Overall
Hikvision 20.6243 TP-Link 16.6602 Philips 35.0981 Philips 11.6994
Dahua 15.6551 Huawei 7.8171 SMA 7.0101 Hikvision 6.87477
Free 6.678 Sagemcom 3.914 Belkin 5.1691 TP-Link 5.5534
Cisco 5.5442 Arris 3.4836 Nest 4.9062 Dahua 5.21837
Intelbras 1.7712 Free 2.898 Alertme.com 3.186 Free 3.192
D-Link 1.6469 ZTE 2.797 eQ-3 1.8212 Huawei 2.6057
ICP 1.4617 D-Link 2.6815 Phillips 1.5984 SMA 2.3367
Suga 0.6438 Technicolor 1.6664 Inspur 1.4921 Cisco 2.14777
Flir 0.5883 AVM 1.026 Enphase 1.3957 Belkin 1.7223
Topwell 0.3139 Mitrastar 0.9936 Hager 1.0898 Nest 1.6354

D-Link 1.4428
Sagemcom 1.30467
Arris 1.1612
Alertme.com 1.062
ZTE 0.99803
eQ-3 0.607067
Intelbras 0.5904
Technicolor 0.555467
Phillips 0.5328
Inspur 0.497367

Table 4.1: Vendors mean score grouped by device type

were merged to receive a single file. Emulated firmware images get saved under the
scratch/<id> folder and the results of the network and web access respectively under
scratch/<id>/ping and scratch/<id>/web. In addition to these two emulation
fidelity parameters, additional information such as name, ip and architecture are
also available. We used these files to create a CSV file of all images and their emulation
results. To our luck, FirmAE [4] already implemented a script to fetch the required
information called util/collect_results.py. Next, we downloaded all sheets from
their published spreadsheet [25] and combined them. However, as we did not want to
lose the information about their manufacturer, we introduced a new field with the help of
csvstack, called vendor, which is used to identify the sample and its associated sheet.

1 [...]
2 $ csvstack -n vendor -g asus_latest asus_latest.csv
3 $ csvstack -n vendor -g belkin_latest belkin_latest.csv
4 $ csvstack -n vendor -g linksys_latest linksys_latest.csv
5 $ csvstack -n vendor -g netgear_latest netgear_latest.csv
6 $ csvstack -n vendor -g tplink_latest tplink_latest.csv
7 $ csvstack -n vendor -g trendnet_latest trendnet_latest.csv
8 $ csvstack -n vendor -g zyxel_latest zyxel_latest.csv
9 $ csvstack -n vendor -g dlink_ipcamera dlink_ipcamera.csv

10 $ csvstack -n vendor -g tplink_ipcamera tplink_ipcamera.csv
11 $ csvstack -n vendor -g trendnet_ipcamera trendnet_ipcamera.csv

26

4.3. Evaluation

12 $ csvstack -n vendor -g dlink_latest dlink_latest.csv

Listing 4.3: csvstack adding field

After modifying our data layout, we implemented a small python script that compares
the data to the published FirmAE dataset. The program iterates over the FirmAE set
and tries to find a corresponding entry in the result set. It compares the web and ping
results of each point. If the columns match, is_same gets set to true, and the next row
gets processed.

1 [...]
2 with open(’comparison_result.csv’, ’w’) as csvfile:
3 writer = DictWriter(csvfile, fieldnames=fieldnames)
4 writer.writeheader()
5 for row in dataset_reader:
6 vendor = row[’vendor’]
7 name = row[’Name’]
8 data_ping = row[’ping’].lower()
9 data_web = row[’web’].lower()

10 result_ping = ’false’
11 result_web = ’false’
12 exists = False
13 is_same = False
14
15 #cases where the dataset included a wrong _ at the end
16 #DIR825B1_FW201SS_KR_
17 name = name.strip("_")
18
19 with open(args.results, ’r’) as resultobj:
20 result_reader = DictReader(resultobj)
21 for r_row in result_reader:
22 if r_row[’Name’] == name:
23 exists = True
24 result_ping = r_row[’ping’].lower()
25 result_web = r_row[’web’].lower()
26
27 if result_web == ’none’:
28 result_web = ’false’
29 if result_ping == ’none’:
30 result_ping = ’false’
31
32 if result_ping == data_ping and (result_web == data_web):
33 is_same = True
34 break
35
36 writer.writerow({’vendor’: vendor, ’name’:name, ’is_same’:is_same, ’

exists_in_result’:exists, ’data_ping’:data_ping, ’result_ping’:
result_ping, ’data_web’:data_web, ’result_web’:result_web})

37
38 dataobj.close()

Listing 4.4: data comparison script

27

4. FirmAE Verification

Afterward, we imported the returned file into a spreadsheet in order to calculate the
emulation success rate per manufacturer. The result of this evaluation can be found in
Table 4.2. The experiment shows that our setup works equally well as the one used in
the paper. We believe that the better emulation fidelity is the cause of the newer utilized
FirmAE commit, which introduced various bug fixes over three years. The only set
which performed worse is Linksys from LatestSet. In this subset an image named
FW_E2500_2.0.00.001_US_20140417 reported no web access. This contracts the
information found in the published emulation report of FirmAE [25]. As this experiment
was only done to prove our setup’s functionality, we will not continue with failure analysis.
We will therefore carry on with the evaluation of our hypothesis. However, we assume that
the failed case of FW_E2500_2.0.00.001_US_20140417 has something to do with
the configuration in docker-helper.py. Each emulation test runs until it succeeds,
fails, or runs into the configured timeout (default 2400s). During our evaluation, we
observed execution times close to the timeout (sometimes around 30 minutes), which
could mean that the Linksys image timed out.

FirmAE Evaluation
Dataset Vendor Images Net Web Net Web

AnalysisSet
D-Link 179 177 167 (93.30%) 177 168 (93.85%)
TP-Link 73 73 59 (80.82%) 73 62 (84.93%)
NETGEAR 274 259 257 (93.80%) 259 257 (93.80%)

Sub Total 526 509 483 (91.83%) 509 487 (92.59%)

LatestSet

D-Link 58 54 48 (82.76%) 54 49 (84.48%)
TP-Link 69 69 54 (78.26%) 68 56 (81.16%)
NETGEAR 101 92 79 (78.22%) 95 83 (82.18%)
TRENDnet 106 91 63 (59.43%) 90 66 (62.26%)
ASUS 107 63 62 (57.94%) 64 62 (57.94%)
Belkin 37 30 22 (59.46%) 31 22 (59.46%)
Linksys 55 48 44 (80.00%) 50 43 (78.18%)
Zyxel 20 18 10 (50.00%) 18 10 (50.00%)

Sub Total 553 465 382 (69.08%) 470 391 (70.70%)

CamSet
D-Link 26 19 17 (65.38%) 19 17 (65.38%)
TP-Link 6 6 0 (00.00%) 6 6 (00.00%)
TRENDnet 13 10 10 (76.92%) 13 10 (76.92%)

Sub Total 45 35 27 (60.00%) 35 27 (60.00%)
Total 1124 1009 892 (79.36%) 1014 905 (80.51%)

Table 4.2: Emulation rate comparison of the FirmAE dataset

28

4.3. Evaluation

4.3.2 Hypothesis Evaluation

In order to test our hypothesis, we first tried to evaluate RandomSet. The first round
of analysis proved to show that a large number of samples could not be processed by
FirmAE. The reason is that most of the used samples do not include a Linux-based
system. Also, only about 30 images of RandomSet could be extracted and identified
correctly by the framework. Because of this, a reduced data collection of RandomSet was
constructed, which only consists of samples that Firmadyne and FirmAE support. The
new set includes 30 images and represents the 28.5% success rate we observed during our
initial analysis. After evaluating LinuxSet, we collected and imported the results into a
spreadsheet for further processing. The result can be seen at Table 4.3. The table shows
that out of 65 samples, Firmadyne could only manage to emulate and provide access to
the web service for two of them. FirmAE, however, managed to emulate 32.3% of all
images. Therefore, the results show that FirmAE has a 10.48 times better emulation
success rate than Firmadyne, which means that our hypothesis got disproved.

FirmAE Firmadyne
Dataset Vendor Images Net Web Net Web

RandomSet
(reduced)

AVR 6 1 0 (0.00%) 0 0 (0.00%)
Dahua 3 0 0 (0.00%) 0 0 (0.00%)
D-Link 5 5 4 (13.3%) 0 0 (0.00%)
Huawei 8 0 0 (0.00%) 0 0 (0.00%)
Sagemcom 3 3 0 (0.00%) 0 0 (0.00%)
TP-Link 5 5 2 (6.66%) 0 0 (0.00%)

Sub Total 30 14 6 (20.0%) 0 0 (0.00%)

LinuxSet

Belkin 3 2 2 (5.71%) 1 1 (2.85%)
Cisco 7 4 2 (5.71%) 0 0 (0.00%)
D-Link 9 7 5 (14.2%) 1 1 (2.85%)
Huawei 1 0 0 (0.00%) 0 0 (0.00%)
Intelbras 5 2 2 (5.71%) 0 0 (0.00%)
TP-Link 6 6 4 (11.4%) 1 0 (0.00%)
Wdigital 4 0 0 (0.00%) 0 0 (0.00%)

Sub Total 35 21 15 (42.9%) 3 2 (5.71%)
Total 65 35 21 (32.3%) 3 2 (3.08%)

Table 4.3: Emulation rate comparison of RandomSet and LinuxSet

As we also wanted to see how the different emulation tweaks of FirmAE impact the
success rate, we also evaluated the test set with each arbitration disabled. We modified
firmae.config for each of the five arbitrations. The result is shown in Figure 4.1.
In our experiment, network arbitration seems to be the most important, decreasing the

29

4. FirmAE Verification

emulation success rate by 20% in RandomSet, 28.57% in LinuxSet, and 24,62% overall.
Omitting the boot arbitration also seems to greatly lower the emulation rate by 20%.
The other arbitration seemed to impact the rate by 10%, while NVRAM only reduced it
by about 4% across the board.

Perhaps the most interesting find is the result of disabling kernel arbitration. It kept
the emulation rate the same and increased it in the case of D-Link DWR-111 from
RandomSet. This has to do with how kernel arbitration and disabling it is working.
Kim et al. [4] implemented a kernel module that can be configured to create stubs in
devfs, emulate system reboots, create stubs in procfs, and other quality-of-life features.
This module is included in the pre-compiled Linux v4.1 and Linux v2.6 MIPS kernels
that get downloaded when deploying FirmAE. The exciting part is that these modified
kernels are the only kernel files (except for the ARM kernel) downloaded, meaning that
disabling FIRMAE_KERNEL in firmae.config does not omit kernel arbitration but
rather switches between the v4.1 and v2.6 kernel respectively (See Listing 4.5). This is
important as turning off the kernel arbitration is therefore only possible by unloading
the kernel module at run-time and not, as communicated on their GitHub page, by
changing the configuration of FirmAE. However, when looking at the published results,
the emulation success rate decreases when disabling kernel arbitration which would
indicate that Kim et al. [4] maybe used a slightly different setup than the one publicized
on GitHub.

1 FIRMAE_KERNEL=true
2 [...]
3 case "${1}" in
4 armel)
5 echo "${BINARY_DIR}/zImage.${1}"
6 ;;
7 mipseb)
8 if (${FIRMAE_KERNEL}); then
9 echo "${BINARY_DIR}/vmlinux.${1}.4"

10 else
11 echo "${BINARY_DIR}/vmlinux.${1}.2"
12 fi
13 ;;
14 mipsel)
15 if (${FIRMAE_KERNEL}); then
16 echo "${BINARY_DIR}/vmlinux.${1}.4"
17 else
18 echo "${BINARY_DIR}/vmlinux.${1}.2"
19 fi
20 ;;
21 *)
22 echo "Error: Invalid architecture!"
23 exit 1
24 esac
25 }

Listing 4.5: firmae.config

30

4.3. Evaluation

Another fascinating result can be seen when comparing the bar graph to the one published
by Kim et al. [4]. Unlike in our result, NVRAM arbitration appears to decrease emulation
success rate the most with an average of 35%. Turning off the boot and network arbitration
decreases the emulation rate by 30%. The other arbitrations seem to impact the success
rate by about 22.35%, and only 4.88% of images are affected by kernel arbitration.
NVRAM and kernel show the most prominent differences, while boot, network, and
other arbitration seem to have around the same value. This demonstrates that when
re-hosting a randomly obtained firmware sample, using boot and network arbitration
techniques most frequently increases the emulation success rate. NRAM arbitration
appears not always to be relevant, but when firmware uses the NVRAM interface, it
seems to help significantly in making the web service accessible. Therefore, improving
boot and network tweaks should be the primary focus when aiming for a broader and
more generic framework.

RandomSet LinuxSet Overall
0

5

10

15

20

25

30

35

40

45

50

55

60

W
eb

Se
rv

ic
e

Em
ul

at
io

n
R

at
e

Firmadyne
FirmAE

w/o Boot Arbitrations
w/o Network Arbitrations
w/o NVRAM Arbitrations
w/o Kernel Arbitrations
w/o Other Arbitrations

Figure 4.1: web-service emulation rate for each arbitration

31

CHAPTER 5
Conclusion

Firmware re-hosting has been getting more attention as its use case in developing
embedded systems and security analysis is invaluable. In this work we first gave a
brief introduction to the terminology that comes with embedded devices and firmware
re-hosting. We talked about the different device types and clarified the term firmware.
In addition, peripherals and their different access methods in the context of embedded
systems got discussed. The difference between re-hosting approaches was another topic
we tackled. We explained how binary analysis techniques like fuzzing or symbolic
execution get used by firmware re-hosting solutions to infer hardware peripherals. Also,
we adopted the idea of Wright et al. and defined the term emulation fidelity, which
describes how closely the emulation execution can match that of the physical system.
Next, we introduced five firmware re-hosting frameworks and discussed current problems
with which this research field has to work. While the biggest challenges appear to be
related to peripheral access, more minor difficulties (e.g., unpacking and extracting
firmware samples) are still as important and can decide between emulation success and
failure. Additionally, we discussed how each of the surveyed tools tries to overcome these
complications and introduced properties that ideal analysis re-hosting systems must have
to compare them even further. Although we have seen that there are many attempts to
solve firmware re-hosting, we are currently far from a generic solution. Therefore, we
concluded that the practitioner should always select the tool based on his intentions.
The excerpt of tools showed that solutions trying to infer the system’s behavior using
symbolic execution are currently on the rise and show great potential when considering
the information they have available. Still, the fidelity of hardware-in-the-loop approaches
is not matched, and many open problems remain before this technique can be generally
applicable. Until then, full firmware re-hosting frameworks that use abstractions to
specialize on one type of system look the most promising.

33

5. Conclusion

FirmAE, the successor of firmadyne, is one of those tools. Kim et al. [4] stated that
their developed techniques increase the emulation success rate of firmadyne by about
4.8 times. We used their published dataset to verify their results and proved that our
experimental setup works equally well as theirs. Afterward, we used the research results
of Kuma et al. [5] to construct our own dataset and demonstrated that FirmAE has a
10.48 times better emulation rate than firmadyne. Disabling each arbitration showed
that the categories boot and network seem to have the most impact, while NVRAM
only reduces the success rate by about 4%. This contracts with the information found in
the published paper. While the categories boot, network, and other are roughly around
the same values, NVRAM and kernel show significant differences. Therefore we propose
that for a broader and more generic framework improving boot and network arbitration
should be the main focus. We also found that disabling kernel arbitration increases
the emulation success rate for one sample, and turning it off only switches between a
modified v4.1 and v2.6 Linux kernel. Meaning that deactivating kernel arbitration can
only be done by unloading the kernel module at runtime and not as stated by setting the
corresponding option in firmae.config. Due to this reason, further studies should
look at the available data to determine whether the images may depend on the newer
functions that the v2.6 kernel does not offer and, thus, reduce the emulation rate.

34

List of Figures

3.1 Categorization and flow of the steps required during Pre-Emulation. Based
on Wright et al. [2] . 13

4.1 web-service emulation rate for each arbitration 31

35

List of Tables

3.1 Excerpt of tools tackling the re-hosting problem 21

4.1 Vendors mean score grouped by device type 26
4.2 Emulation rate comparison of the FirmAE dataset 28
4.3 Emulation rate comparison of RandomSet and LinuxSet 29

37

Bibliography

[1] J. Margolis, T. Oh, S. Jadhav, and Y. Kim, “An in-depth analysis of the mirai
botnet,” pp. 6–12, 07 2017.

[2] C. Wright, W. Moeglein, S. Bagchi, M. Kulkarni, and A. Clements, “Challenges in
firmware re-hosting, emulation, and analysis,” ACM Computing Surveys, vol. 54,
pp. 1–36, 01 2021.

[3] A. Vetterl and R. Clayton, “Honware: A virtual honeypot framework for capturing
cpe and iot zero days,” in 2019 APWG Symposium on Electronic Crime Research
(eCrime), pp. 1–13, 2019.

[4] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Firmae: Towards large-scale
emulation of iot firmware for dynamic analysis,” pp. 733–745, 12 2020.

[5] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich, D. Kuznetsov, R. Gupta, and
Z. Durumeric, “All things considered: An analysis of IoT devices on home networks,”
in 28th USENIX Security Symposium (USENIX Security 19), (Santa Clara, CA),
pp. 1169–1185, USENIX Association, Aug. 2019.

[6] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry, Y. Fratantonio,
D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel, and G. Vigna, “Toward the
analysis of embedded firmware through automated re-hosting,” in 22nd Interna-
tional Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019),
(Chaoyang District, Beijing), pp. 135–150, USENIX Association, Sept. 2019.

[7] M. Muench, Dynamic binary firmware analysis : challenges solutions. PhD thesis,
09 2019.

[8] D. Mange, “Teaching firmware as a bridge between hardware and software,” Educa-
tion, IEEE Transactions on, vol. 36, pp. 152 – 157, 03 1993.

[9] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg, J. Högberg,
F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system simulation platform,”
Computer, vol. 35, p. 50–58, feb 2002.

[10] F. Bellard, “Qemu, a fast and portable dynamic translator.,” pp. 41–46, 01 2005.

39

[11] “Jetset: Targeted firmware rehosting for embedded systems,” in 30th USENIX
Security Symposium (USENIX Security 21), USENIX Association, Aug. 2021.

[12] “Automatic firmware emulation through invalidity-guided knowledge inference,” in
30th USENIX Security Symposium (USENIX Security 21), USENIX Association,
Aug. 2021.

[13] J. C. King, “Symbolic execution and program testing,” Commun. ACM, vol. 19,
p. 385–394, jul 1976.

[14] G. Vidal, “Concolic execution and test case generation in prolog,” pp. 167–181, 09
2014.

[15] B. Feng, A. Mera, and L. Lu, “P2im: Scalable and hardware-independent firmware
testing via automatic peripheral interface modeling,” in 29th USENIX Security
Symposium (USENIX Security 20), pp. 1237–1254, USENIX Association, Aug. 2020.

[16] D. Chen, M. Egele, M. Woo, and D. Brumley, “Towards automated dynamic analysis
for linux-based embedded firmware,” 01 2016.

[17] L. de Moura and N. Bjørner, “Z3: an efficient smt solver,” vol. 4963, pp. 337–340,
04 2008.

[18] F. Wang and Y. Shoshitaishvili, “Angr - the next generation of binary analysis,” in
2017 IEEE Cybersecurity Development (SecDev), pp. 8–9, 2017.

[19] S. Vasile, D. Oswald, and T. Chothia, Breaking All the Things—A Systematic Survey
of Firmware Extraction Techniques for IoT Devices: Studies on Socio-Ecological
Systems’ Vulnerability, Resilience and Governance, pp. 171–185. 01 2019.

[20] C. Heffner, “binwalk,” 2010.

[21] J. C. Craig Heffner, “firmware mod kit,” 2011.

[22] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Firmalice -
automatic detection of authentication bypass vulnerabilities in binary firmware,” in
22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San
Diego, California, USA, February 8-11, 2015, The Internet Society, 2015.

[23] M. Kammerstetter, C. Platzer, and W. Kastner, “Prospect peripheral proxying
supported embedded code testing,” 06 2014.

[24] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Fir-
mae emulation dataset.” https://drive.google.com/file/d/
1hdm75NVKBvs-eVH9rKb5xfgryNSnsg_8/view?usp=sharing, 2020. Ac-
cessed: 2022-08-19.

40

https://drive.google.com/file/d/1hdm75NVKBvs-eVH9rKb5xfgryNSnsg_8/view?usp=sharing
https://drive.google.com/file/d/1hdm75NVKBvs-eVH9rKb5xfgryNSnsg_8/view?usp=sharing

[25] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Firmae emu-
lation result.” https://docs.google.com/spreadsheets/d/1dbKxr_
WOZ7UmneOogug1Zykj1erpfk-GzRNni8DjroI/edit?usp=sharing, 2020.
Accessed: 2022-08-19.

41

https://docs.google.com/spreadsheets/d/1dbKxr_WOZ7UmneOogug1Zykj1erpfk-GzRNni8DjroI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1dbKxr_WOZ7UmneOogug1Zykj1erpfk-GzRNni8DjroI/edit?usp=sharing

	Abstract
	Contents
	Introduction
	Background
	Embedded Systems
	Firmware
	Peripherals
	Device Classification
	Emulation
	Analysis Techniques
	Re-hosting

	State of the Art
	Surveyed Frameworks
	Challenges
	Comparison

	FirmAE Verification
	Problem Statement
	Experimental Setup
	Evaluation

	Conclusion
	List of Figures
	List of Tables
	Bibliography

