
Automated Stitching for Scanning
Electron Microscopy Images of

Integrated Circuits

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Daniel Burian, BSc
Matrikelnummer 00825451

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.-Prof. Dipl.-Ing. Mag. Dr. techn. Edgar Weippl
Mitwirkung: Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik, MSc

Univ.Lektor Dipl.-Ing Christian Kudera, MSc

Wien, 27. Jänner 2022
Daniel Burian Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Automated Stitching for Scanning
Electron Microscopy Images of

Integrated Circuits

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Daniel Burian, BSc
Registration Number 00825451

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.-Prof. Dipl.-Ing. Mag. Dr. techn. Edgar Weippl
Assistance: Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik, MSc

Univ.Lektor Dipl.-Ing Christian Kudera, MSc

Vienna, 27th January, 2022
Daniel Burian Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Daniel Burian, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 27. Jänner 2022
Daniel Burian

v

Acknowledgements

I would like to thank my supervisor Edgar Weippl, as well as my friends and colleagues
Christian Kudera, Georg Merzdovnik, and Markus Müllner for their support and feedback.
Furthermore, I would like to express my sincere gratitude to Markus Kammerstetter and
Trustworks GmbH for all their support, especially in the form of providing access to their
scanning electron microscope, as well as existing image data.
My sincere thanks also go to Wolfgang Kastner and the Automation Systems Group
at TU Wien, who hosted the Hardware Security Lab, where a substantial amount of
research for this work was conducted.
I would also like to thank the Austrian Study Grant Authority for the opportunity to
finish this work within the scope of a scholarship (Studienabschlussstipendium).
Finally, I would like to thank my wife Eszter and my son David for giving me time to
work on my thesis as well as providing distraction when I needed to disentangle my
thoughts.

vii

Kurzfassung

Während etablierte Reverse-Engineering Toolchains für Software, Firmware und zu einem
gewissen Grad auch für Hardware, in Form von Schnittstellen von oder zwischen Kompo-
nenten, existieren, ist die Hürde zum Einstieg in das Reverse Engineering von Mikrochips
nachwievor hoch. Dies liegt vor allem an den Kosten für das benötigte Equipment,
insbesondere an den Kosten eines dem Stand der Technik entsprechenden Rasterelektro-
nenmikroskops (REM). Ein solches REM wird aufgrund der kleinen Fertigungsgrößen
benötigt, da optische Mikroskope in vielen Fällen nicht die hierfür benötigte Vergrößerung
bieten.

REM werden im Rahmen des Reverse-Engineering eingesetzt um Bilder der einzelnen
Lagen eines Chips während des iterativen Delayering-Prozesses zu erstellen. Ziel dieses
Prozesses ist es, mittels des erstellten Bildmaterials die eingesetzten Logik-Gatter und
deren Verbindungen festzustellen. Darauf aufbauend kann die Funktionalität der imple-
mentierten Logik nachvollzogen werden. Weiters ist es in einigen Fällen möglich, den
Inhalt von Read-Only Memory (ROM) im Chip anhand des Bildmaterials auszulesen.

REMs erzeugen üblicherweise Bilder mit einer Auflösung in der Größenordnung mehrerer
Megapixel. Da eine Schicht eines Chips aber üblicherweise eine Gigapixel-Auflösung
voraussetzt um ausreichend Details abbilden zu können, muss eine Vielzahl an Bildern pro
Schicht angefertigt werden. Die so erzeugten Einzelbilder werden anschließend zu einem
großen Gesamtbild zusammengefügt. Verglichen mit optischen Mikroskopen bringt dieser
Vorgang bei REMs besondere Herausforderungen mit sich, insbesondere die Verzerrung der
Bilder durch Ladungseffekte, sowie oftmals kontrastarmes und verrauschtes Bildmaterial.

Eine Möglichkeit, wie die hohe Einstiegshürde im Berech des Mikrochip-Reverse-Engineerings
gesenkt werden kann, ist eine Reduktion der Anforderungen an die Bildqualität. Ge-
lingt dies, können auch ältere, gebrauchte und dementsprechend günstigere REMs zur
Erstellung des Bildmaterials genutzt werden.

Im Rahmen dieser Arbeit werden mehrere neue Algorithmen vorgestellt und evaluiert,
mit der Zielsetzung verrauschtes, kontrastarmes Bildmaterial solcher älterer REM er-
folgreich verarbeiten zu können. Zunächst wird der am besten geeignete bestehende
Image-Registration Algorithmus festgestellt. Zur Evaluierung der zur Verfügung stehen-
den Kandidaten werden Einzelbilder mehrerer Chip-Schichten mit einer Gesamtgröße
mehrerer Gigapixel erstellt. Für die am besten geeigneten Image-Registration Algorithmen

ix

wird anschließend automatisierte Parametrierung anhand des eingesetzten Bildmaterials
entwickelt und evaluiert.

Aufbauend auf den Ergebnissen des besten Image-Registration Algorithmus werden
anschließend vier neue Global-Stitching Algorithmen vorgestellt, deren Aufbau für un-
terschiedliche qualitative Metriken optimiert ist. Diese Global-Stitching Algorithmen
erstellen das Gesamtbild einer Schicht des untersuchten Chips, aufbauend auf den Er-
gebnissen des eingesetzten Image-Registration Algorithmus. Abschließend werden diese
Algorithmen evaluiert indem die hierbei erstellten zusammengefügten Bilder sowohl mit-
einander, als auch mit aktuellen, dem Stand der Technik entsprechenden Image-Stitching
Tools verglichen werden.

Abstract

While established toolchains are widely available for reverse engineering software, firmware,
and even hardware on the printed circuit board level to some degree, the entry barrier
to reverse engineering of integrated circuits (ICs) remains high due to the associated
cost of equipment. One key driver of this high cost is the requirement of high-quality
scanning electron microscopes (SEMs) for the analysis of ICs with small feature sizes.
While optical microscopes are a cost-effective alternative for large feature sizes, modern
ICs are manufactured with feature sizes that are too small for the limited magnification
of optical microscopes.
In IC analysis, SEMs are used to create images of individual layers of integrated circuits
during an iterative delayering process. The aim of this process is to image logic gate
placement and interconnects, from which detailed information about the implemented
logic functions can be recovered. In some cases, it is also possible to extract the contents
of read-only memory (ROM) on the chip.
An SEM usually creates images in the range of megapixel resolutions, but analyzing an
IC layer requires resolutions in the gigapixel range. To create such large images, many
individual images must be taken and then fused into one large image. Compared to
images created by optical microscopes, SEM images pose unique challenges: They are
affected by distortion due to charging effects and often exhibit high levels of noise and
low contrast.
One way of reducing the entry barrier to IC reverse engineering is to develop algorithms
that can provide good results even in the case of suboptimal image quality, as can be
produced by comparatively cheap, used SEMs.
This thesis introduces and evaluates several algorithms for the purpose of fusing noisy
images with low contrast created by older SEMs. Based on an evaluation using gigapixel
scale image sets, the most efficient and effective image registration algorithm for these
image properties is determined. These algorithms determine offsets between individual
overlapping images in the image set. For the two best algorithms, automated inference
of optimal parameters is developed. Four global stitching algorithms are introduced,
to create large fused images based on the results of image registration. These four
algorithms optimize for different quality metrics in the generated fused image. Finally,
the introduced algorithms are evaluated and compared to state-of-the-art image stitching
software.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Methodology . 3
1.4 Structure of the Work . 4

2 Background 5
2.1 Integrated Circuit Reverse Engineering 5
2.2 Scanning Electron Microscopy . 7
2.3 Image Stitching . 9

3 State-of-the-Art Stitching Software 13
3.1 IC Reverse Engineering Software . 13
3.2 Image Stitching Software . 14

4 Image Registration Algorithms 17
4.1 Feature Detection Algorithms . 17
4.2 Template Matching algorithms . 20

5 Evaluation of Image Registration Algorithms 25
5.1 Image Sets . 25
5.2 Methodology . 29
5.3 Evaluation Results . 30

6 Automated Parameter Determination 31
6.1 Parameter Determination Using Match Score Sum 32
6.2 Parameter Determination Using Match Score Mean 32
6.3 Parameter Determination for Cross-Covariance Using Phase Correlation 34

xiii

6.4 Conclusion for Parameter Determination 35

7 Global Stitching Algorithms 37
7.1 Version 1: Maximum Score . 38
7.2 Version 2: Offset Statistics . 38
7.3 Version 3: Match Multiple Neighbor Tiles 41
7.4 Version 4: Match Multiple Neighbor Tiles With Added Offset Statistics 43

8 Global Stitching Evaluation 45
8.1 Image Sets . 45
8.2 Evaluation Methodology . 46
8.3 Evaluation Results for Exact Offset Count and Absolute Offset Deviation 49
8.4 Preselection for Manual Evaluation . 51
8.5 Manual Evaluation Results . 56
8.6 Discussion . 58

9 Conclusion and Future Directions of Work 61

A Detailed Evaluation Results for Image Registration Algorithms 63

List of Figures 73

List of Tables 75

Bibliography 77

CHAPTER 1
Introduction

1.1 Motivation
Reverse engineering integrated circuits (ICs) is a sophisticated process, primarily used
for detailed technical analysis, such as evaluation of IC security mechanisms, for the
assessment of utilized intellectual property and detection of counterfeits [1]. Typical
approaches to reverse engineering ICs start with the decapsulation of the IC followed by
iterated delayering and imaging. The resulting images can then be analyzed to recover
the netlist, which describes the components and interconnects of the IC. This process
yields very detailed information about the internals of the IC. Unfortunately, the entry
barrier to this kind of analysis is high due to the cost of required equipment.

While optical microscopes are comparatively inexpensive, current IC manufacturing
processes create structures that are in most cases too small to be imaged this way [2].
Scanning electron microscopes (SEMs) can provide the required image resolution but are
orders of magnitude more expensive [3]. Depending on the available financial budget,
pre-owned and therefore cheaper SEMs may be a suitable compromise. However, cheaper
pre-owned SEMs typically utilize older technology, limiting available beam current at the
required spot size [4]. The result of these restrictions is that images produced by such
SEMs are likely to contain significant noise and low contrast at the required levels of
magnification.

One way to reduce the entry barrier to reverse engineering ICs is to improve image
processing capabilities to allow for the use of noisy, low contrast images produced by
older SEMs operating close to their magnification limits. Image stitching algorithms
that still work with such low-quality images would be an important contribution towards
tackling this challenge.

The problem of stitching many small overlapping images into one fused image is not new.
One example is the discussion of efficient algorithms for motion analysis in Multireso-

1

1. Introduction

lution Image Processing and Analysis, published in 1984 [5]. Technology has improved
significantly since then, and better algorithms, particularly in the field of feature detec-
tion, have been published in the meantime [6, 7]. However, the noise and distortion in
the previously mentioned low-quality SEM images pose problems for currently publicly
available stitching software, especially when combined with areas of ICs that show few
discernible features in the overlapping areas of adjacent images. One possible reason for
this is that available software was developed for different fields of research, such as cell
biology or neuroscience, each with its own requirements and challenges that differ from
those of reverse engineering [8].

The improvement of available stitching algorithms and image stitching software, focusing
on their suitability for IC reverse engineering, has the potential to reduce the entry
barrier for research in this area. In the best case, the improvements will benefit other
areas of research where microscopic image processing is utilized, such as Bioinformatics
[9].

1.2 Problem Statement
This work aims to introduce and evaluate algorithms that tailor to a corner case of
image stitching to improve upon currently available state-of-the-art tools. This corner
case arises from the use of affordable pre-owned scanning electron microscopes to create
images of integrated circuits for the purpose of reverse engineering IC components. Since
pre-owned SEMs do not provide the visual clarity of current cutting-edge SEMs at higher
magnifications, improved algorithms are required to deal with comparatively high levels
of noise and low contrast in the created images. These challenges are aggravated by
SEM-specific imaging properties such as distortion through charging effects. To achieve
this goal, several problems must be addressed:

• Image Registration: A plethora of image registration algorithms are available, but
not all are equally efficient considering the challenges posed by noise, low contrast,
and distortion. It is therefore necessary to evaluate which image registration
algorithms are best suited for this task.

• Automated Determination of Parameters: Ideally, the resulting tool should
not require any information beside the input images and their ordering. Depending
on the used image registration algorithm, parameters such as expected overlap or
sensitivity for keypoint detection are required to achieve good results. Therefore,
ways to automatically determine good or even optimal values for the required
parameters can drastically improve usability.

• Global Stitching: Unlike stitching panorama photos or images created by optical
microscopes, distortion in SEM images can vary significantly from image to image.
This can pose significant problems when creating the fused image based on the
individual offsets between all adjacent images. This is because changing the order in

2

1.3. Methodology

which the images are added to the fused image will change the outcome significantly.
Therefore, a good global stitching algorithm will minimize disagreement between
the previously computed individual offsets and the final location of any given part
of the fused image.

1.3 Methodology

In the first step, the current state of available image stitching software is assessed.
Furthermore, a literature survey is conducted to determine suitable image registration
algorithms for determining offsets between overlapping images.

In the second step, two large image test sets are created, which exhibit varying degrees
of problems that are typical for IC Images created by SEMs. While two test sets may
seem like a small number, each test set consists of over 400 individual images, with an
overall size of 1.6 to 2 gigapixels per image set. Furthermore, these two test sets contain
complete layers of the imaged ICs, thus assuring that areas that are easy to stitch are
visible, as well as more challenging areas.

In the third step, the performance of multiple image registration algorithms is evaluated
using the previously created test sets. These algorithms aim to detect the correct offset
between two adjacent overlapping images. In this comprehensive evaluation, multiple
parameters are tested for each algorithm, and the results are compared to manually
determined offsets. For the best algorithms, automated detection of optimal parameters
is investigated using the two test sets.

Based on the results of the third step, in the fourth step, multiple global stitching
algorithms are developed that use the results of the previously determined best image
registration algorithm to assemble the complete picture.

Prior to evaluation, a tool to execute the whole workflow for stitching an image set is
developed. This tool incorporates the results of the previous steps: The most suitable
image registration algorithm is run on the image set, using automatically determined
parameters. The image registration results are then used as input to one or multiple
global stitching algorithms, and the results are exported as fused image as well as in the
form of metadata.

In the fifth step, suitable metrics are chosen to evaluate the quality of the stitched images.
Subsequently, the algorithms are evaluated according to these metrics. To the extent this
is possible using only the stitched images without detailed metadata, the fused images
are also compared to the results produced by state-of-the-art image stitching software.
For this fifth step, the two previously created test sets and an additional image set are
used.

3

1. Introduction

1.4 Structure of the Work
The further chapters of this work are structured as follows: Chapter 2 gives a short
introduction to IC reverse engineering, scanning electron microscopy imaging, specifically
focusing on distortions as observed in available test sets, and image stitching with a focus
on image sets produced by microscopy automation tools.

Chapter 3 discusses open-source and proprietary state-of-the-art software products and
their limitations when applied to noisy, distorted images.

Chapter 4 introduces several promising image registration algorithms, followed by their
evaluation in Chapter 5. For the two best algorithms, automated discovery of the required
parameters is discussed in Chapter 6.

Chapter 7 introduces algorithms to generate fused images from image sets based on an
image registration algorithm’s output. A detailed evaluation follows in Chapter 8, in
which the performance of these algorithms is examined according to different metrics.
Furthermore, in an extensive manual evaluation, the quality of generated images is
compared to images stitched by state-of-the-art software.

Finally, Chapter 9 concludes this work and ends with an outlook on possible future
work.

4

CHAPTER 2
Background

This chapter aims to provide a short overview of reverse engineering integrated circuits,
the challenges of the imaging process when using scanning electron microscopes, and the
general workflow of image stitching tools.

2.1 Integrated Circuit Reverse Engineering
The aim of reverse engineering an integrated circuit (IC) is to reconstruct the details of
its inner workings in the form of a high-level netlist from the physical IC. The reasons for
reverse engineering include detecting hardware trojans, analyzing intellectual property
infringement, rebuilding obsolete parts, security analysis, and detecting counterfeit ICs
that may influence reliability [10–12].

Reverse engineering ICs can be done either non-destructively or destructively. Non-
destructive reverse engineering is possible using X-ray tomography but requires an
expensive synchrotron light source [13]. The X-ray tomography data allows viewing
individual layers of the IC with a resolution of up to 10nm [14].

Destructive reverse engineering often requires multiple ICs, as the process of delayering is
typically somewhat error-prone. The workflow for destructive reverse engineering usually
consists of the following steps:

1. Decapsulation: The IC package (shown in Figure 2.1) is removed to expose the
die. Processes for decapsulation include wet and dry etching, milling, polishing,
laser ablation, or using a focused ion beam (FIB) workstation [15]. After exposing
the die, its surface is cleaned to prepare it for imaging.

2. Imaging: Using a scanning electron microscope (SEM), images of the exposed
layer of the IC are taken. The microscope stage moves the die in a grid pattern to

5

2. Background

Figure 2.1: Simplified side view of an IC package. The die (blue) is connected to the
lead frame (grey) via bonding wires (yellow). Decapsulation removes the package (black)
to expose the die.

take overlapping images of the whole layer. The number of images is typically in
the hundreds to thousands when imaging the whole layer. Optical microscopes may
provide sufficient resolution in case of very large feature sizes (greater than 0.25µm
according to Torrance et al. [2]). The imaging process stays the same in this case,
although issues related to the limited depth of field in optical microscopes may
require adaptations such as the use of z-stacking [15, 16].

3. Delayering: After imaging, the currently exposed layer is removed using a com-
bination of wet and dry etching as well as polishing to expose the next layer
underneath. Imaging and delayering steps are repeated for all layers [2, 15].

4. Image Processing: The images of each layer are combined into fused images.
These fused images are then aligned to each other so that tracing connections and
features across multiple layers becomes possible [11, 15, 16].

5. Gate-Level Netlist Extraction and Verification: Devices and their connections
are identified using image recognition. Manual or automated verification is utilized
to find errors in component identification, the image fusion process, or in the
underlying images. Such verifications include checking for missing connections or
disconnected traces. The result of this step is a gate-level netlist that identifies the
logic gates and their interconnects [2, 12, 15, 16].

6. High-Level Netlist Extraction: Based on the gate-level netlist, a high-level
netlist is generated. This process is an area of ongoing research and typically
involves a combination of various automated approaches and manual analysis [17–
21].

This process results in a high-level hierarchical netlist, which includes high-level compo-
nents as well as their underlying logic in sufficient detail for simulation or analysis.

In the following chapters, this work will focus on one task within the image processing
step, where individual images of the IC layers are stitched into fused images. The aim is
to optimize this process for the unique challenges posed by noisy and distorted images
produced by scanning electron microscopes operating at their capacity limits or by minor
sample preparation errors.

6

2.2. Scanning Electron Microscopy

2.2 Scanning Electron Microscopy
This section gives a short overview of the components and operating principles of scanning
electron microscopes and relevant characteristics of the images created by SEMs for this
work. A much more detailed description can be found in L. Reimer’s book on scanning
electron microscopy [22], which provided the basis for a large part of this chapter.

Scanning electron microscopes use an electron beam to scan over a given sample and
measure the interactions of the electrons with the sample. State-of-the-art SEMs can
resolve features down to sub-nanometer imaging resolutions. SEMs produce greyscale
images because detectors of SEMs measure the interactions of the electron beam with the
sample by quantifying the amount of energy deposited by electrons hitting the detector
within a given timeframe.

While optical microscopes are sufficient for large feature sizes up to 0.25µm, smaller
feature sizes require the use of SEMs due to their higher magnification [2]. Another benefit
of SEMs compared to optical microscopes is that the depth of field is considerably higher,
making z-axis adjustments unnecessary when imaging large sections of flat samples such
as integrated circuits if the sample is aligned correctly. Other less relevant differences
include the characteristics of distortions as well as the fact that optical microscopes
typically provide multiple color channels.

The subsequent sections outline the basic design of an SEM with a focus on facts relevant
to imaging integrated circuits.

2.2.1 Basic SEM Components
Primary electrons that form the electron beam are generated in the electron source. This
is done by heating the filament of a thermal emission source, such as a tungsten filament,
or by utilizing a field emission cathode. The emitted electrons are then accelerated
towards the anode in the column, using the differential in electrical charge between the
negatively charged electron source and the positively charged anode. The electron beam
is converged by the condenser lens and subsequently directed by the scan coils to generate
the raster pattern required to create an image of the sample. The objective lens converges
the beam to focus it on the sample.

The column and sample chamber need to be under vacuum to avoid atoms and molecules
that do not belong to the sample interacting with the electrons of the electron beam.
While low vacuum imaging is possible, high vacuum decreases the scattering of secondary
and backscattered electrons, allowing for higher magnification.

2.2.2 Detectors
Two types of electron beam interactions with the sample are relevant for creating SEM
images: Secondary electrons (SE) and backscattered electrons (BSE). Secondary electrons
are low-energy electrons (<50eV) emitted when the electron beam’s high-energy primary

7

2. Background

electrons hit the sample [23]. These interactions occur near the surface of the sample.
The secondary electrons are deflected towards the detector by a positively charged grid.
One implementation of such a detector is using a scintillator that emits photons when hit
by secondary electrons. A photomultiplier is then used to convert the incident photons
into an electric signal.

On the other hand, backscattered electrons result from elastic interactions of the electron
beam with the atomic nuclei of the sample. This interaction causes some of the beam’s
high-energy electrons to be reflected, with the direction in which the electrons are reflected
depending on the angle at which the beam hits the sample. Heavier elements can deflect
incident electrons better than lighter elements, making them appear brighter on an image
generated using a BSE detector. This interaction is not limited to the surface of the
sample but also occurs deeper inside the sample with the depth depending on acceleration
voltage and composition of the sample [22].

Secondary electron detectors are poorly suited to detect backscattered electrons, as
these high-energy electrons are not deflected by the positively charged grid used to
attract low-energy electrons towards the SE detector. Since the path of the backscattered
electrons depends on the angle at which the electron beam hits the sample, backscatter
detectors are placed symmetrically above the sample, concentric with the electron beam.
Additionally, the utilized detector can be segmented to attain topological contrast where
the sample appears to be illuminated from the angle of the segment sensor. Since BSE
are high-energy electrons (>50eV), detectors are typically semiconductor-based.

There are other types of detectors for SEMs, such as detectors for energy-dispersive x-ray
spectroscopy (EDX). However, since these detectors are not relevant for imaging ICs,
their technical details are omitted here. SE and BSE detectors are both suitable for
imaging ICs. Which detector produces better images for ICs depends on the quality
of sample preparation. While SE detectors often produce images with higher contrast,
BSE detectors are more resilient regarding surface charge accumulation [24], which is
discussed in detail in the following section.

2.2.3 Noise and Distortion
Fluctuations in the electron emission, which follow a Poisson distribution, cause shot
noise. This type of noise is the dominant noise source in SEMs with thermionic electron
guns [25]. For SEMs, sources for noise include primary emission, secondary emission,
scintillator, photocathode, and photomultiplier [26, 27]. Additional sources of noise can
arise from the internal noise of electronic components such as amplifiers at the end of
the detection chain [27]. The overall pixel density distribution fits neither Poisson nor
Gauss distributions correctly [28].

This noise can be reduced by decreasing scan speed or increasing beam energy. However,
since slower scan speeds increase image acquisition time, tradeoffs between noise and
image acquisition time are often necessary. Furthermore, increasing beam energy or
decreasing scan speed can increase charging effects in non-conductive materials. These

8

2.3. Image Stitching

Figure 2.2: Charging effect causes increased brightness and distortion in areas with
charge build-up.

effects are caused by an accumulation of charge on the sample’s surface, which deflects
primary and secondary electrons. It can cause distortion, abnormal contrast, bright lines,
and other unusual phenomena in the produced images [29]. An example of such charging
effects is shown in Figure 2.2. Charging effects occur in non-conducting material and
can be minimized by coating the sample with conductive material [30]. In the case of
semiconductor samples, the use of conductive coating makes microprobing impossible,
and the layer can damage the sample indirectly [29]. Another downside of coating is the
additional time required for the coating process and subsequent removal after imaging of
the current layer is complete.

For the use case of IC reverse engineering, the distortion and noise of SEM images can pose
significant challenges in the image processing and post-processing phases of the reverse
engineering process. While these effects can be reduced with more expensive equipment
and more time-consuming imaging processes, maximizing the utility of noisy, distorted
images by creating more robust algorithms for image processing and post-processing can
be far more cost-effective.

2.3 Image Stitching
The general workflow of stitching fused images consists of three steps: First, the relation
between images is analyzed using image registration. Finding keypoints that are present
in two or more images or comparing whole areas and assessing their similarity leads to the
required information to fit the images to the camera or stage motion model. In the next
step, using the data from step 1, images are mapped to the motion model, determining

9

2. Background

the position of each individual image in the fused image. Finally, the fused image is
created from the individual images. The individual images may be warped during this
step to counteract distortion. Blending may also be utilized to smooth out differences
between overlapping image sections.

When restricting image sets to SEM images of ICs, stitching is drastically simplified:
Since SEMs provide a high depth of field and the surface of ICs is flat, it is reasonable
to assume the IC area will always be in focus. Furthermore, since the planar surface
of the IC should be aligned almost perfectly horizontally when creating image sets, the
movement model for stitching can ignore the z-axis. Therefore, the stitching algorithm
only needs to handle translation along the x- and y-axis. Relaxing the requirements
further, images in the set are arranged in a grid pattern. This stems from the fact
that image creation is automated due to its time-consuming nature, using microscopy
automation tools such as µManager [31]. To create an image set with such an automation
tool, the user selects the starting point, the number of rows and columns as well as the
desired offset between images. Additionally to creating the images, these tools then
produce metadata files that include each image’s position on the image grid. These
positions are not exact x,y-coordinates, but indices for the images along the x- and y-axis
of the image grid, such as “3rd row, 2nd column”. With this information, the stitcher
has to find the correct offset between overlapping images using an image registration
algorithm.

After computing the offset between adjacent images on the image grid, the main challenge
is finding optimal locations of each individual image in the fused image. The usual
workflow that the algorithms introduced in this work as well as state-of-the-art tools
follow is to start at any one image by assigning it a location (e.g., 0x,0y) and then
iteratively computing the location of adjacent images by summing up the location of the
current image with the offset to the adjacent image [32, 33].

The progress of such an algorithm may be viewed as a graph within the image grid, as
Figure 2.3 shows. The main difficulty when creating the fused image lies in unavoidable
image registration errors, which may be caused by distortion, discretization, noise, or a
lack of features in the overlapping area. These errors vary in intensity and may add up
along paths through the graph/grid, as shown in Figure 2.4. Thus, the quality of fused
images based on different graphs in the same grid may vary drastically.

10

2.3. Image Stitching

Figure 2.3: Examples of different stitching graphs in a 3x3 image grid. The start node is
highlighted blue.

11

2. Background

(a) Theoretical example of error accumulation: The stitching graph is shown with green arrows,
while the accumulating error is shown as the offset between the red lines. The red lines should be
horizontally aligned for a perfect fused image.

(b) Example of this type of error in one of the test sets.

Figure 2.4: Typical example for the accumulation of errors along stitching paths causing
tearing in the fused image.

12

CHAPTER 3
State-of-the-Art Stitching

Software

Two software categories are relevant for stitching scanning electron microscope images of
integrated circuits: IC reverse engineering tools and image stitching software. However,
software solutions in the first category may cover only a subset of steps in the reverse
engineering process and may not include image stitching. Furthermore, these tools are
often considered core intellectual property by the developing entity with neither free nor
commercial licenses available to the public. Tools of the second category are plenty and
readily available. State-of-the-art software in these two categories is discussed in the
following sections.

3.1 IC Reverse Engineering Software
Multiple software solutions offer a broad spectrum of features ranging from automation of
the imaging process to extracting high-level netlists [2, 11, 16]. However, several of these
software tools are either no longer available or may have never been publicly available:

• Degate is a publicly available tool for reverse engineering ICs. Development of
the original Degate software stopped in 2011, but recently a fork of this project
was published on GitHub with the aim to modernize and eventually replace the
original software [34, 35]. While Degate supports analysis of already stitched images,
including tasks like gate recognition, grid definition, design rule checks, annotations,
and netlist extraction, it does not include any stitching functionality at the time of
writing.

• ChipJuice by Texplained reportedly contains multiple features for reverse engineer-
ing ICs such as layer stitching, via detection, track detection, and netlist generation

13

3. State-of-the-Art Stitching Software

[36]. Licenses for ChipJuice, are supposedly available on request. Unfortunately, our
license request remained unanswered. Hence, detailed evaluation was not possible,
and it is unclear whether the product is actually available.

• GDS-X/GDS-eXtractor is documented in detail in an academic publication and
reportedly supports layer reconstruction from multiple images, layer vectorization,
error correction, and netlist extraction. However, it does not appear to be available
for download or commercial licensing. At the time of writing, search results for this
software only return the paper in which it is described [16].

• Similarly, ICWorks Extractor by Techinsights (formerly ChipWorks) is documented
in several publications but is not publicly available [1, 2]. It reportedly supports
features such as annotations, automated feature extraction, automated identification
of on-chip structures, and netlist extraction.

• HAL is an open-source netlist reverse engineering tool [37]. It works directly on
netlists and does not include any features to create netlists from images. This tool
aims to aid the analyst in reverse engineering high-level functionality from a flat
netlist.

3.2 Image Stitching Software
The problem of image stitching has been addressed many times in the previous decades,
with the available software suitable to stitch SEM images of ICs roughly falling in one of
two categories: Image stitchers for microscopy and panorama stitching software. The
subsequent sections describe several publicly available image stitching applications that
either claim to be suitable for stitching microscopy images or have been successfully used
to stitch such images in prior research.

3.2.1 Image Stitchers for Microscopy
While the images used for this research clearly belong to this category, images from optical
microscopes also fall into the same category. However, they differ in essential properties
such as having color channels and possibly being out of focus due to the significantly
reduced depth of field when compared to SEMs. On the other hand, SEM images are likely
to have a worse signal-to-noise ratio (SNR), and the number of individual images to be
fused into one large image may also be substantially greater due to higher magnification.
Furthermore, distortion caused by charging effects only occurs in SEM images and poses
additional challenges. Given these differences, stitching tools for optical microscopy may
not deliver good results for SEM images. Since the available documentation does not
discuss the ability of the tools to stitch SEM images, all tools listed in this chapter
will be evaluated in Section 8.4. A notable commonality among the subsequently listed
microscopy image stitchers is that they are all plugins for the open-source tool suite
Fiji/ImageJ [38].

14

3.2. Image Stitching Software

• Grid/Collection Stitching: This plugin was created by Preibisch et al. [33] and
is included in the Fiji tool suite by default. It utilizes cross-correlation to match
image pairs and a global optimization algorithm to compose the final image. Unlike
many similar tools, this software is capable of stitching 2D and 3D images. This
plugin requires knowledge of the overlap parameter, which specifies the expected
overlap between adjacent tiles.

• BigStitcher: A Fiji plugin that succeeds the previously mentioned Grid/Collection
Stitching plugin and has been published shortly after the algorithms introduced
in this work were completed. Like the Grid/Collection Stitching plugin, it was
developed by Preibisch et al. [39]. It is optimized for microscopy images of biological
research and the published description, especially of its new global optimization
algorithm, appears promising.

• Microscopy Image Stitching Tool (MIST): This Fiji plugin was published by
Chalfoun et al. around the same time the tools and algorithms for this work were
developed [32, 40, 41]. It follows similar ideas in principle: Images are matched
pairwise, overlap and other parameters can be detected automatically. A model
of the stage movement is inferred from the computed offsets, and subsequently,
a minimum spanning tree is generated that follows the best stitching results in
combination with the most likely tile position deduced from the stage movement
model.

3.2.2 Panorama Stitching Software

Panorama stitching software is usually used to stitch digital camera images, which
have different properties compared to microscope images, such as a high degree of
lens distortion and requiring mapping using a 3-dimensional camera movement model.
Nevertheless, these tools can provide useful results for sections of IC images with high
SNR and clearly visible features in the overlapping image areas. The subsequently listed
tools are panorama stitching tools that have been successfully used for research purposes
in other fields [42].

• Microsoft Image Composite Editor (MS-ICE): This software was published
by Microsoft and, while proprietary, is free to use. It is optimized for panoramas,
but the settings support camera motion models appropriate for stitching microscopic
images. No intermediate output is generated, and besides changing projection
type and cropping, no manual correction is possible via the user interface. Manual
correction of stitching errors may be possible in theory by changing the .spj file
created by MS-ICE, but due to the transformation matrices in the file, stored
data would have to be converted into human-readable format first. Wójcicka et al.
successfully used this tool to stitch optical microscopy images of metallic minerals
for the purpose of surface analysis [42].

15

3. State-of-the-Art Stitching Software

• PTGui Pro: PTGui Pro is a closed source panorama stitching tool with a free
fully-featured trial version available (version 11.16 at the time of writing). A guide
on how to stitch microscopy images with PTGui was published by Dr. Georg von
Arx at the Swiss Federal Institute for Forest, Snow, and Landscape Research WSL
[43].

• Teorex Photostitcher: This proprietary software is available for multiple plat-
forms. In addition to the commercially licensed version, a free trial version is
available. Teorex advertises its photo stitching tool’s ability to stitch microscope
images, even though this is not the main focus of the application [44].

16

CHAPTER 4
Image Registration Algorithms

The first step to creating an automated image stitching tool is determining which image
registration algorithm delivers the best results for noisy, distorted images of integrated
circuits. Image registration in the context of stitching is used to find the offset between two
adjacent, overlapping images. This processing step is necessary because the microscope
stage is not moving in pixel-exact offsets between taking images. Furthermore, distortion
also changes the offset and may even make it impossible to find an optimal offset.

The image registration algorithms considered for evaluation fall into two categories: The
first category consists of feature matching algorithms that search for keypoints in each
image and then evaluate which of those keypoints also appear on the other image to
deduce how the images fit together. The other category consists of template matching
algorithms, which are not limited to two-dimensional images but can be used for signal
analysis in multiple dimensions. These template matching algorithms assign a value
to every possible offset, which corresponds to the similarity of the overlapping areas of
the images. This value is subsequently called the match score. The subsequent sections
describe the selected feature matching and template matching algorithms in detail.

4.1 Feature Detection Algorithms
Many feature detection algorithms have been published that may be suitable to stitch
scanning electron microscope images. To limit the scope of the subsequent evaluation,
Scale-Invariant Feature Transform (SIFT) and Oriented FAST and Rotated BRIEF
Algorithm (ORB) have been singled out as candidates for evaluation. The reason for
this selection lies in the results of multiple publications, which show that for a wide
range of use cases, SIFT often delivers the best accuracy while ORB tends to require
less computational resources [45–49]. These two algorithms are described in detail in the
following sections.

17

4. Image Registration Algorithms

4.1.1 Scale-Invariant Feature Transform (SIFT)
SIFT was published in 1999 by David Lowe [50]. It improves upon previous feature
detection approaches by providing features that are invariant to image scaling, translation,
and rotation and partially invariant to illumination changes, affine, and 3D projection.
The keypoint-computation follows three steps:

1. Keypoint candidates are determined by finding minima and maxima of a difference-
of-Gaussian function in scale-space. The first step in this process is to convolve
the input image with the Gaussian function using σ =

√
2 to produce image A.

This step is then repeated, and the resulting image B is subtracted from image
A to compute the first layer of the scale-space pyramid. The second layer of the
pyramid is computed by resampling image B with 1.5x bilinear interpolation. Only
keypoints that are detected on each layer of the pyramid will be considered in the
following steps.

2. A canonical orientation is assigned to each keypoint, as determined by a histogram
of local image gradient orientations.

3. A local image description is generated for each keypoint. This description character-
izes the surrounding of a keypoint in a manner invariant to its location, scale, and
orientation. It is composed of orientation planes that specify the image gradient
magnitude of each orientation for every layer of the pyramid.

The resulting keypoints and keypoint descriptions must then be matched to find cor-
responding keypoints in the two images. To do so, Lowe introduced the best-bin-first
indexing algorithm. However, OpenCV’s Brute-Force K-Nearest-Neighbors matching
algorithm was used for subsequent evaluations instead. It matches each descriptor of
the first image with all descriptors of the second image and returns the k best matches,
resulting in slightly better results at the cost of higher computational complexity.

To compute the offset between two overlapping images, the matched keypoint pairs are
first grouped by their offsets. The largest group of agreeing keypoints is then chosen as
the offset most likely to be correct. The number of keypoint pairs in the largest group
and the difference in size to the second-largest group can be used to quantify confidence
in the correctness of the computed offset. Figure 4.1 shows the matching keypoints
discovered by the SIFT algorithm.

4.1.2 Oriented FAST and Rotated BRIEF Algorithm (ORB)
Features from Accelerated Segment Test (FAST) is a corner detection method used to find
keypoints in an image [51]. On the other hand, Binary Robust Independent Elementary
Features (BRIEF) is an algorithm used to describe the area surrounding such keypoints
[52]. The ORB algorithm, published in 2011 by Ethan Rublee et al. [53], combines
slightly modified versions of the FAST keypoint detector and BRIEF descriptors to

18

4.1. Feature Detection Algorithms

Figure 4.1: Matched SIFT-Keypoints in two adjacent images of test set2

provide accuracy similar to SIFT with computational requirements suitable for real-time
applications. The algorithm is composed as follows:

• Detection using oFAST: Since FAST Keypoints do not possess an orientation
component, it is extended to create oFAST. Due to its good performance, keypoints
are detected using FAST with parameter K set to 9 (FAST-9). These keypoints
are then extended with a Harris corner measure to order the keypoints, so the N
best keypoints may be chosen. To mitigate the fact that FAST does not produce
multi-scale features, the keypoints are computed for each level of a scale pyramid
of the image.

• The orientation of each keypoint is determined by computing the intensity centroid,
which assumes that a corner’s intensity is offset from its center [54].

• Feature point description using rBRIEF: Since BRIEF is not rotation-invariant,
it is “steered” according to the previously computed orientation in increments of
12 degrees to make it less sensitive to rotation. The resulting algorithm “steered
BRIEF” was then used on a training set of keypoints to determine 256 binary-tests
that are uncorrelated and have their means close to 0.5, resulting in the rBRIEF
algorithm. This algorithm is used to convert the previously detected keypoints into
binary feature vectors to describe the features.

The resulting keypoints and descriptors were matched and then grouped in the same
way as for SIFT, using OpenCV’s Brute-Force K-Nearest Neighbor matching algorithm
and grouping the resulting matches by their x and y offsets to determine the most likely

19

4. Image Registration Algorithms

Figure 4.2: Matched ORB keypoints in two adjacent images of test set2

offset of two overlapping images. Figure 4.2 shows the matching keypoints discovered by
the ORB algorithm.

4.2 Template Matching algorithms
The term template matching only partially describes the subsequently listed algorithms.
The name of this category was chosen because most of the implementations used for
evaluation are contained in the template matching module of OpenCV. However, the
chosen algorithms are used in various situations ranging from other applications within
the image processing domain, such as image registration, to less related domains such
as signal processing in cryptanalysis or neurophysiology [55, 56]. The workflow for
the subsequently listed algorithms is the same: For each possible offset, the template
matching algorithm is given the overlapping areas of the images as input. It then
returns a value called match score, which quantifies the similarity of these overlapping
image sections. Typically the offset corresponding to the best match score is chosen
automatically from the resulting match score matrix. Alternatively, the results can be
visualized as a greyscale image for manual inspection. The following sections describe
the template matching algorithms in detail.

4.2.1 Normed Sum of Squared Differences
The normed sum of squared differences, named SqDiff_Normed in OpenCV, is a compara-
tively simple measure of similarity for signals closely related to the residual sum of squares
(RSS) in statistics. The underlying mathematical equation is shown in Equation (4.1),
where T (x, y) denotes the pixel value at coordinates (x, y) in the template and with

20

4.2. Template Matching algorithms

Figure 4.3: SqDiff_Normed output for the same two overlapping images shown in
Section 4.1. The most probable offset according to this algorithm is at location (536,
427) with a match score of 0.0135331926867

I(x, y) being the pixel value at coordinates (x, y) in the image. R(x, y) is the resulting
match score.

R(x, y) =
�

x�,y� (T (x�, y�) − I(x + x�, y + y�))2��
x�,y� T (x�, y�)2 · �

x�,y� I(x + x�, y + y�)2
(4.1)

In this equation, a low value for R(x, y) indicates a good match at a given offset (x, y).
To find the optimal overlap according to SqDiff within two overlapping images, R(x, y)
is computed for all possible offsets, and the minimum is chosen as the most probable
offset. OpenCV also includes a non-normed version of this algorithm that consists only
of the numerator in Equation (4.1). The most notable comparative advantage of normed
SqDiff versus the non-normed version is that the value R(x, y) of normed SqDiff depends
only on the similarity between the compared image areas and not on the size of the
compared area. Figure 4.3 shows the results for two overlapping images, with darker
pixels corresponding to better matches.

4.2.2 Normed Cross-Correlation
Cross-correlation is probably most widely known for its use in the domain of signal
processing, where it is used to determine the similarity of two signals at various time-lags.

21

4. Image Registration Algorithms

Figure 4.4: Result of normed cross-correlation of two images of test set 2 with a small
number of repetitive features (left) vs a large number of repetitive features (right)

Mathematically it corresponds to the sliding dot product and to multiplication in the
frequency domain. Normed cross-correlation is listed in Equation (4.2), where T (x, y)
denotes the pixel value at coordinates (x, y) in the template, with I(x, y) being the pixel
value at coordinates (x, y) in the image and R(x, y) as the resulting match score. A
larger value of R(x, y) corresponds to a better match at the given offset (x, y).

R(x, y) =
�

x�,y� (T (x�, y�) · I(x + x�, y + y�))��
x�,y� T (x�, y�)2 · �

x�,y� I(x + x�, y + y�)2
(4.2)

Cross-correlation is quite resistant to noise. Peaks in the signals contribute to the sliding
window integral most when they are perfectly aligned, while non-aligned peaks caused
by noise are attenuated by the sliding dot product. On the other hand, distortions that
change the alignment of the peaks of the two signals reduce the quality of the result,
which may pose problems for stitching distorted SEM images.

As previously mentioned, cross-correlation is used in signal processing to find the location
of a signal along the time axis. When using this algorithm for image registration or
template matching, the result is a two-dimensional matrix, in which values indicate the
similarity of the two images at the corresponding location. The matrices in Figure 4.4
show that it is harder to find the correct offset with cross-correlation when the signal
is repetitive, as the peaks in the signal will match almost perfectly at several locations.
In such repetitive images, even manual matching may not be suitable to determine the
correct offset. However, due to the way cross-correlation matches the similarity of the
whole image section as opposed to only matching individual features of the image, it is
likely to produce a good result in cases where no one correct location can be determined.
While the result, in this case, will often look as good as results from manual matching

22

4.2. Template Matching algorithms

when only considering the two overlapping images, an offset error introduced this way
may propagate to neighboring images during global stitching.

A downside of cross-correlation when matching greyscale images such as SEM images
is that the signals are represented by positive integer values. This means that negative
peaks in the signal lack the ability to cancel out noise efficiently since their lowest possible
value is not a negative value but 0. For this reason, better results were achieved with
cross-covariance, where results are improved by subtracting the mean from each image
before computing cross-correlation, as discussed in Section 4.2.3.

4.2.3 Normed Cross-Covariance
Normed cross-covariance is very similar to normed cross-correlation, with Equation (4.2)
and Equation (4.3a) being essentially identical. The difference is that for each signal, the
mean of the signal is subtracted before computing cross-correlation for a given sliding
window, as Equation (4.3b) and Equation (4.3c) show, with w and h as width and height
of the template. This improves noise attenuation in signals that would otherwise have a
non-zero mean, since negative spikes will cancel out more effectively with positive spikes
when the signals are not aligned perfectly.

R(x, y) =
�

x�,y� (T �(x�, y�) · I �(x + x�, y + y�))��
x�,y� T �(x�, y�)2 · �

x�,y� I �(x + x�, y + y�)2
(4.3a)

T �(x�, y�) = T (x�, y�) − 1/(w · h) ·
�

x��,y��
T (x��, y��) (4.3b)

I �(x + x�, y + y�) = I(x + x�, y + y�) − 1/(w · h) ·
�

x��,y��
I(x + x��, y + y��) (4.3c)

4.2.4 Phase Correlation
Phase correlation is very similar to cross-correlation when calculated via the frequency
domain. Cross-correlation via the frequency domain is shown in Equation (4.4), while
Equation (4.5) shows the definition of phase correlation, with ◦ as the entry-wise product,
F as Fourier transform, F−1 as inverse Fourier transform and ∗ denoting the complex
conjugate.

R = F−1 (F(I) ◦ F(T)∗) (4.4)

R = F−1
� F(I) ◦ F(T)∗

|F(I) ◦ F(T)∗|
�

(4.5)

The main difference is the added element-wise normalization in the frequency domain,
which causes clear spikes after inverse Fourier transformation where the similarity of

23

4. Image Registration Algorithms

(a) Normalized cross-correlation (b) Phase correlation

Figure 4.5: Comparison of cross-correlation and phase correlation results for the same
sections of images of test set 2.

the signals is maximized. Figure 4.5 shows a comparison of the results of normalized
cross-correlation and phase correlation.

An additional benefit of phase correlation is that several computationally cheap algorith-
mic extensions are available to achieve subpixel accuracy due to the typical shape of the
resulting spike at the best matching offset. OpenCV’s implementation, which was used
for evaluation, uses a 5x5 centroid at the peak for subpixel accuracy.

24

CHAPTER 5
Evaluation of Image Registration

Algorithms

In this chapter, the previously introduced image registration algorithms are evaluated
using two image sets. To establish a ground truth for the evaluation, the correct offsets
for all horizontal pairs of overlapping image pairs were manually determined. Image pairs
where no correct offset could be determined manually were excluded from the evaluation.
The following sections describe the image sets and their preparation, the scope and
methodology of the evaluation, and the evaluation results.

5.1 Image Sets
Two image sets from previous IC reverse engineering projects were chosen to compare
the performance of the algorithms for realistic use cases. Test set 1 shows the top layer
of a decapsulated chip. The 441 images of test set 1 are arranged in 21 columns and 21
rows, and the individual images show high contrast, low noise, and minimal distortion,
making it comparatively simple to stitch. Test set 2 consists of 440 images in 20 columns
and 22 rows. This image set is a typical worst-case scenario for stitching: The images
show an IC with several layers removed. Part of the insulating layer between the next
visible layer and the previously removed layer is still on the chip. This makes the vias
clearly visible in the form of bright spots, but details of the next layer are only barely
visible. The individual images are very noisy with low contrast and some distortion near
the eastern and southern border of the chip. Figure 5.1 shows images of both test sets to
illustrate the differences in contrast and noise.

The restriction of using just two test sets stems from the large amount of time required
to determine correct offsets manually. For the sake of meaningful comparison, it was
deemed more important to include all areas of the imaged ICs to account for common

25

5. Evaluation of Image Registration Algorithms

Figure 5.1: Sample images from both test sets

difficult-to-stitch areas such as memory regions than to include images from many different
layers and projects, which vary in noise, contrast, and distortion. To compensate for
this shortfall, the test sets were chosen such that test set 1 represents the level of detail
and contrast which is typically required for the analysis of a single layer of an IC in the
process of reverse engineering its logic. In contrast, test set 2 represents the worst-case
scenario of using a somewhat dated SEM to take images between layers of the IC to
determine the location of vias. The evaluation was limited to horizontal image pairs of
the test sets due to the time-consuming nature of manual offset determination.

5.1.1 Removal of Unsuitable Images
For each image set, the correct pairwise offsets of horizontal pairs were determined
manually. Due to reasons such as distortion, high noise, low contrast, or lack of significant
features in the overlapping area, some image offsets could not be determined manually.
The category of these images was named “indeterminate” and the affected image pairs
were not taken into account during this evaluation. However, these images still matter
for global stitching.

Test set 1 contains no such image pair, while 62 of 420 horizontal offsets in test set 2 were
categorized as indeterminate. Figure 5.2 shows an image pair where the only features in
the overlapping area are straight lines, allowing for arbitrary placement along those lines
without discernible difference in outcome.

Some image pairs in these categories have subjectively correct offsets, but it was not
possible to provide the algorithms with additional information concerning how to match
images in these special cases. Examples of such a case were images along the southern
border of the IC, where the upper 10% of the image area shows the IC border and
the lower 90% show the blurry surface of the stage. In several cases, the translational
difference of the stage surface between two images did not match the translational

26

5.1. Image Sets

Figure 5.2: Example of an overlapping image pair where manual matching failed due to
the lack of significant features in the overlapping area

Figure 5.3: Example of an overlapping image pair where automated matching fails due
to the area of interest (upper 10% of the images) having a different translational offset
than the lower 90% that depict the stage surface of the microscope

difference of the IC surface, resulting in a parallax effect. Figure 5.3 shows such an image
pair where an acceptable solution would mean ignoring the mismatch of the majority of
the images to focus on the best match for the IC border in the top 10% of the image.
However, since these images contain no significant features for the use case of reverse
engineering, their accurate placement is not considered essential for evaluation.

27

5. Evaluation of Image Registration Algorithms

Figure 5.4: Fused test set 2 images with indeterminate images highlighted red.

Figure 5.4 shows all images in test set 2 whose offsets were deemed indeterminate. The
areas can be separated into three categories:

• At the north-western corner, as well as along the southern border of the IC, the
distance along the z-axis between the IC and the stage caused differing translational
offsets for sample and background

• Two areas on the chip contained very repetitive structures consisting primarily of
horizontal or vertical lines and no features to allow for exact stitching

• Images along the eastern border of the IC where charging effects or erratic stage
movement caused distortions

28

5.2. Methodology

5.2 Methodology

For each algorithm, image offsets were computed for all horizontal image pairs of the
image sets. If the deviation of the result to the correct result was at most 1 pixel for
each axis, the result was deemed correct. This margin of error was considered suitable to
account for possible differences in rounding. For algorithms that required parameters
such as the expected overlap, a subset of relevant parameters was selected manually,
which were then tested using a wide range of values.

With the SIFT algorithm, a slightly different approach for evaluation was necessary:
Its comparatively slow execution time meant that only 25 parameter configurations
could be evaluated within the scope of this research. These parameter configurations
were chosen in regular intervals around manually determined suitable parameters. The
SIFT parameters were also evaluated using much smaller subsets of the original test
sets. These subsets consisted of 100 randomly chosen image pairs for each image set.
Evaluation of this algorithm still took significantly longer than for all other algorithms
combined. While a performance difference between the two feature detection algorithms
SIFT and ORB was to be expected, it is unclear why SIFT was so much slower than
ORB. One possible reason may be that, like ORB, it was not using random sample
consensus (RANSAC), but OpenCV’s brute force matcher, which meant higher numbers
of keypoints resulted in much longer execution times. While further optimization would
likely lead to significantly better performance, the results were not promising enough to
justify the required engineering effort.

Each algorithm was evaluated in a virtual machine (VM) running Ubuntu Linux 18.04.
The VM host was equipped with an Intel Core i7-7820HQ, but without a dedicated
graphics card. The VM was assigned 8 GB of RAM. The host machine was otherwise
idle for the duration of the evaluation. Algorithm implementations of the open-source
OpenCV library were used. Better results may be achieved using implementations of the
tested algorithms that utilize GPUs to accelerate computation. To speed up computation,
execution was parallelized to utilize all 8 CPU cores. Only one algorithm and test set
were evaluated at any given time.

5.2.1 Evaluated Parameters

Since the OpenCV-based implementations of all template matching algorithms except
phase correlation used the same function signature, they required the same two parameters:
expected overlap and minimal overlap. These two parameters determine the size of the
image segments that are compared using template matching, such as the right border
of the left image and the left border of the right image. If the difference between these
parameters is large, the sections to be compared are larger, leading to slower execution
times. On the other hand, phase correlation was part of a different OpenCV module and
only required one parameter specifying the expected overlap. Like before, the expected
overlap determines the size of the compared image sections.

29

5. Evaluation of Image Registration Algorithms

Test Set 1 Test Set 2
Algorithm Score tmin tmax Score tmin tmax
pcorr 100.00% (420) 0.10 0.18 99.44% (356) 0.17 0.21
ccoeff 100.00% (420) 0.19 0.20 98.60% (353) 0.38 0.38
sift 100.00% (100) 37.49 306.15 95.00% (95) 56.31 57.07
sqdiff 100.00% (420) 0.18 0.20 90.78% (325) 0.51 0.73
ccorr 100.00% (420) 0.19 0.20 90.50% (324) 0.48 0.60
orb 83.57% (351) 0.31 0.39 76.82% (275) 0.19 0.19

Table 5.1: Best scores for each tested algorithm. Score is the number of correctly
determined offsets. Average execution time was computed for each parameter set. tmin

and tmax are minimum and maximum average execution time of parameter sets that
produced optimal results, measured in seconds. Unlike the other algorithms, SIFT’s
maximum score is 100 due to the reduced image set size.

For SIFT, the parameters contrastThreshold and edgeThreshold were evaluated across a
range of values. These parameters are expected to substantially impact the number of
detected keypoints and, therefore, the accuracy of the result.

OpenCV’s ORB implementation exposes many parameters, some of which depend on
each other. For evaluation, the independent parameters WTA_K and fastThreshold
were tested across a range of values. The remaining parameters were set to their default
values.

5.3 Evaluation Results
The two clear winners of this evaluation are phase correlation and cross-covariance, with
phase correlation yielding the best results while also performing faster than the other
tested algorithms. Result quality of SIFT comes somewhat close, but the tested OpenCV
implementation was orders of magnitude slower. All algorithms except ORB yielded
100% correct results for the first test set. Results for test set 2 varied between 99.44%
and 76.82%. Table 5.1 shows the results of the best parameters for each algorithm, where
the score is the number of correctly determined offsets. Due to the large number of tests
run, the corresponding detailed results for each tested parameter combination are listed
in Appendix A. The extent of RAM usage was not explicitly tested. However, SIFT
was the only algorithm for which the evaluation could not be run in parallel to fully
utilize each CPU core, as the machine stopped execution in this case after running out of
memory.

30

CHAPTER 6
Automated Parameter

Determination

The previously discussed algorithms mainly rely on a parameter that defines the expected
overlap of the two input images. As the algorithm evaluation showed, the quality of
results depends on the accuracy of this parameter. This chapter aims to identify solutions
for the automated determination of optimal parameters.

All previously discussed algorithms provide feedback about the degree of confidence that
can be assigned to the computed offset. For feature detection algorithms, the number of
identified keypoints and how well the keypoint matches agree with the movement model
provide such information. Template matching algorithms assign numerical values that
represent the computed similarity of the overlapping image areas. These values are not
necessarily comparable between different image pairs but may be suitable to evaluate
multiple parameters for the same two overlapping images.

This chapter explores how the match score of the two best algorithms determined by the
evaluation in Chapter 5 may be used to deduce the overlap parameters. This previous
evaluation also provides a list of optimal parameters for each algorithm and test set
within the tested parameter range, which will be used as a reference to measure the
success rate for parameter determination algorithms.

31

6. Automated Parameter Determination

Test Set 1
Phase correlation Cross-covariance

Parameter AP1-Score Parameter AP1-Score
0.20 420 (100%) 0.20 361 (86%)

0.25 59 (14%)

Table 6.1: Results of AutoPar1 for test set 1, best parameters as manually determined in
previous evaluation are bold. Parameters with score 0 have been removed. AP1-Score
represents the number of times a parameter led to the highest match score, as computed
by AutoPar1

Test Set 2
Phase correlation Cross-covariance

Parameter AP1-Score Parameter AP1-Score
0.35 375 (89.3%) 0.30 171 (40.7%)
0.40 22 (5.2%) 0.40 139 (33.1%)
0.30 7 (1.7%) 0.35 84 (20.0%)
0.20 6 (1.4%) 0.45 22 (5.2%)
0.25 4 (1.0%) 0.50 2 (0.5%)
0.45 4 (1.0%) 0.25 1 (0.2%)
0.50 2 (0.5%) 0.20 1 (0.2%)

Table 6.2: Results of AutoPar1 for test set 2, best parameters as manually determined in
previous evaluation are bold. AP1-Score represents the number of times a parameter led
to the highest match score, as computed by AutoPar1

6.1 Parameter Determination Using Match Score Sum
Both cross-covariance and phase correlation return a numerical value indicating the
similarity of the overlapping image area, the match score. The first approach to find the
optimal parameter for a given test set using this match score, called AutoPar1, essentially
consists of the following two phases:

1. For each image pair, compute all offsets and their match scores for each parameter
in the selected parameter range

2. To rate each parameter, sum up the number of times it yielded the best match
score among all parameters.

6.2 Parameter Determination Using Match Score Mean
As the results in Table 6.1 and Table 6.2 show, this approach worked well for phase
correlation but not for cross-covariance. The optimal parameter for cross-covariance, an

32

6.2. Parameter Determination Using Match Score Mean

Test Set 1
Phase correlation Cross-covariance

Parameter AP2-Score Parameter AP2-Score
0.20 0.85596 0.20 0.86889
0.25 0.67217 0.25 0.86029
0.30 0.54878 0.30 0.79741
0.35 0.47161 0.35 0.75464
0.40 0.40655 0.40 0.72152
0.45 0.36134 0.45 0.60229
0.50 0.32566 0.50 0.51346
0.55 0.29588 0.55 0.49290
0.60 0.27329 0.60 0.47530

Table 6.3: Results of AutoPar2 for test set 1, best parameters as manually determined in
previous evaluation are bold. AP2-Score is the mean match score computed by AutoPar2.

Test Set 2
Phase correlation Cross-covariance

Parameter AP2-Score Parameter AP2-Score
0.35 0.46983 0.35 0.40090
0.40 0.41096 0.40 0.40065
0.30 0.36323 0.30 0.39312
0.45 0.36127 0.45 0.39062
0.50 0.32317 0.50 0.37328
0.55 0.29222 0.55 0.35873
0.60 0.26786 0.60 0.34635
0.25 0.24623 0.25 0.19359
0.20 0.09788 0.20 0.17078

Table 6.4: Results of AutoPar2 for Testset2, best parameters as manually determined in
previous evaluation are bold. AP2-Score is the mean match score computed by AutoPar2.

expected overlap of 0.35, only ranked third. Better results were achieved by modifying
phase 2 in AutoPar1 to compute the mean match score for each parameter across all
image pairs of the image set and then choose the parameter with the highest match score
mean. This modified algorithm was named AutoPar2.

Table 6.3 and Table 6.4 show that AutoPar2 returned correct results for both algorithms
when computed across all image pairs of a given test set. Since computation across whole
image sets is computationally expensive, a random sample of the image set may be used
to compute optimal parameters. Figure 6.1 shows the reliability of this approach for
multiple sample sizes. For test set 1, this algorithm works well for both cross-covariance
and phase correlation, requiring only a sample size of 1.2% of the test set to yield the

33

6. Automated Parameter Determination

Figure 6.1: Results of AutoPar2 for test set 1 (left) and test set 2 (right) with 100000
random sample sets per sample size for algorithms phase correlation (green) and cross-
covariance (blue).

correct parameter over 95% of the time for both algorithms. Test set 2, however, shows
significantly different results. While for phase correlation, the algorithm determines the
correct parameters over 99.8% of the time with sample sizes as small as 1.2% of the image
set, finding the correct parameter for cross-covariance requires a much larger sample size.
Even with a sample size of 80%, the algorithm still only provides correct results 79% of
the time.

6.3 Parameter Determination for Cross-Covariance Using
Phase Correlation

From these results, it follows that it should be possible to find optimal parameters for
cross-covariance with a smaller random sample by first finding the optimal parameter for
phase correlation and in a second step to use the computed (and likely to be correct)
offsets to find cross-covariance parameters that yield the same offsets. One could argue
that since the parameters for both algorithms specify the expected overlap, they should
have the same value, but since algorithm implementations may differ in details such as
padding, it is not obvious that they must match exactly. Similarly, it is not trivial to
derive the optimal parameter from the computed offset values, as these offset values
follow a specific distribution according to the stage movement model. To avoid these
issues, AutoPar3 selects parameters by matching the computed offsets with the offsets
determined by phase correlation.

As Figure 6.2 shows, AutoPar3 leads to significantly better results than AutoPar2 for
test set 2 but to worse results for test set 1. The reason for this counterintuitive result
for test set 1 is that the algorithm has many “good” parameters that lead to the same

34

6.4. Conclusion for Parameter Determination

Figure 6.2: Results of AutoPar3 for test set 1 (left) and test set 2 (right) with 100000
random sample sets per sample size for cross-covariance.

correct offset for most of the image pairs, with the optimal parameter only making a
difference in a small subset of the total image set. In the case of test set 1, the subset
of image pairs where the optimal parameters yield better results than merely adequate
parameters is sufficiently small that this approach is not practical compared to previous
algorithms. For test set 2, however, the improvements in finding the correct parameters
are significantly better, with a sample size of 10% (42 image pairs) already providing the
correct result 92.7% of the time.

6.4 Conclusion for Parameter Determination
With the given test sets, it is possible to derive optimal parameters for phase correlation
and cross-covariance automatically. Finding the optimal parameter for phase correlation
is significantly simpler and can aid in finding the optimal parameters for other algorithms.
It may be possible to improve automated parameter detection further, e.g. by using the
fact that similar results of different algorithms may be more likely to be correct. This
optimization is left to future work, as the results for phase correlation are sufficiently
good for the purpose of this work.

35

CHAPTER 7
Global Stitching Algorithms

After computing the individual offsets between overlapping image pairs of the image set,
the next step towards creating a fused image is to find the best combination of these
offsets to compute each individual image’s location in the fused image. To ease further
discussion of the details of global stitching, the following terminology will be used going
forward: The individual images composing the fused image will be called tiles. Offsets
describe the computed offset between two neighboring tiles, while location specifies the
absolute position of a tile in the fused image.

In an ideal setting, all offsets lead to the same final fused image. However, in real image
sets, computing the tile locations along different paths will lead to different results.
Among the reasons for this behavior are:

• Discretization: Between taking two images, the microscope stage usually will not
move in exact pixel widths, leading to discretization errors that may sum up, e.g.,
when computing locations along a row of tiles.

• Distortion: There are several sources for image distortion in SEMs, as outlined in
Section 2.2.3. This distortion causes problems when trying to determine correct
offsets and when stitching the fused image. It can only be reverted by warping the
images, which poses significant challenges as the exact transformation to undo the
distortion is unknown.

• Incorrect offset: The image registration algorithm may not always find the correct
offset. This mainly occurs in areas with only a small number of detectable features
or areas with highly repetitive features such as horizontal or vertical lines.

Typically, a global stitching algorithm will start at one tile, assign it the location (0,0),
and from there on compute the locations of the remaining tiles iteratively. The paths it

37

7. Global Stitching Algorithms

can follow to reach other tiles (and thus determine their location) may be viewed as a
graph, with each tile as node and one edge to each immediate neighbor. If the result of
the image registration algorithm also contains the level of confidence (match score), this
number can be used as weight of the corresponding edge in the graph.

Once all locations of tiles have been computed, the next step is to add the minimum
values to all locations so that all image coordinates are ≥ 0. Subsequently, the fused
image can be created by allocating a large enough canvas and drawing each tile at the set
location onto the canvas. The subsequent sections describe approaches for determining
the tile locations required to create the fused image.

7.1 Version 1: Maximum Score
The first algorithm creates a minimum spanning tree by starting with one tile and then
iteratively picking the best tile to add next, as defined by the highest phase correlation
score.

1. Start at the tile closest to the center, determined by its grid index. Set its location
to (0,0).

2. Create a list of all images with no location set, that have at least one neighbor
with a set location.

3. Choose the tile from this list connected by the offset with the highest match score.

4. Compute this tile’s location by combining the offset with the location of the neighbor
image.

5. Repeat steps 2 to 4 until all locations are set.

This algorithm has at least two flaws. The first is that previously discussed discretization
and distortion errors cause tearing along sections where tiles were added sequentially
along the same axis. For example, if the best matches lead the algorithm to go right five
tiles, go down one tile, and go left five tiles, then offset errors can accumulate horizontally
in either row. Figure 7.1 shows an example of such horizontal tearing.

The second flaw is that in some cases, the best scoring offset may still be wrong. This
algorithm relies on the highest scoring offset being correct. Figure 7.2 shows an example
of such an error in a fused image. An attempt to improve this is described in the next
section.

7.2 Version 2: Offset Statistics
The previously discussed second flaw of the maximum score algorithm is that the best
scoring offset of a tile may be wrong in some cases. One way to improve this may

38

7.2. Version 2: Offset Statistics

Figure 7.1: Offset error accumulation leading to visible tearing in fused image.

Figure 7.2: Tile misplacement due to a wrong offset having the highest score.

be to augment the match score with additional statistical information. In theory, the
microscope stage should move the exact same distance between all image pairs for a
given direction. Of course, in practice the underlying mechanisms of stage movement
do not provide infinite accuracy, so that we would expect a normal distribution around
the set distance, ideally with very low deviation. This also means that the greater the
difference between computed offset and mean offset is, the less likely it is to be correct -
assuming the stage is not damaged.

To test this hypothesis, histograms over all computed x and y offsets for all vertical and
horizontal image pairs were computed. Figure 7.3 shows how the offsets (as computed
using phase correlation) are distributed. Unlike test set 1, test set 2 has a wide range
of outliers and higher deviation. If we assume that the stage mechanism of the utilized

39

7. Global Stitching Algorithms

Figure 7.3: Histogram with 15 bins for computed offsets in test set 1 and 2.

40

7.3. Version 3: Match Multiple Neighbor Tiles

microscope did not change significantly between creating the two test sets, it follows
that many computed offsets in test set 2 must be wrong. Furthermore, this outlines the
potential of statistical methods to improve the global stitching algorithm.

To combine the match score with the statistical likelihood of an offset being correct, the
new score was computed by multiplying the match score with the probabilities of the x
and y offset. This means that for a statistically unlikely offset to be accepted as the best
choice by the algorithm, the match score must be proportionately higher than that of
the other available offsets, with higher statistical probabilities of x and y being correct.
The new algorithm thus consists of the following steps:

1. Start at the image closest to the center of the fused image, set its location to (0,0).

2. Create a list of all images with no location set, that have at least one neighbor
with a set location.

3. Choose the image from this list whose offset has the highest score, defined as
MScore = PCScore ∗ P (x) ∗ P (y), where PCScore is the phase correlation score,
and P (x) and P (y) are the probabilities of the respective offsets.

4. Compute the location of this image by combining the offset with the location of
the neighbor image.

5. Repeat steps 2 to 4 until all locations have been computed.

Of course, there are many ways to modify this simple approach and, more importantly,
tailor it to the stage movement model of a specific microscope. However, the goal of this
work is to find an algorithm that will work well on many different SEMs. Improvements
for a specific SEM, such as using automated aggregation of stage movement data across
multiple image sets to create better statistical mechanisms, are left for future work.

7.3 Version 3: Match Multiple Neighbor Tiles
This improvement upon Version 1 aims to reduce the intensity of tearing caused by
accumulating offset errors without modifying the original images by warping. To test its
efficacy over Version 1 individually, Version 3 does not include the statistical modifications
introduced in Version 2.

The general idea for improving the algorithm regarding tearing is that if a tile has two or
more neighbors with set locations, and the offsets to those tiles agree within a certain
margin of error, then this is most likely the correct location or at least close enough. To
determine what can be considered “close enough”, there are two possible options: Option
1 is that the difference to the optimal offset must be visually indistinguishable. Since
offsets are floating-point numbers that are rounded to the next integer for image fusion,
this would mean a difference of at most 1 pixel (px).

41

7. Global Stitching Algorithms

Figure 7.4: Demonstration of a 2-pixel offset deviation in test set 1.

Option 2 is that it must be sufficient for the purpose of reverse engineering, meaning that
the smallest visual features required for reverse engineering must be recognizable with
this offset. The exact definition in terms of the maximum number of pixels of deviation
from the optimal offset depends on the image quality. In the microscope images used
for this work, a maximum deviation of 2 pixels was chosen, as this still allowed correct
tracing of connections. An example illustrating such a 2px shift is shown in Figure 7.4. In
the implementation of this algorithm, the maximum tolerable deviation can be modified
to enable adjustment depending on image quality and reverse engineering requirements.

This algorithm consists of the following steps:

1. Start at the image closest to the center of the fused image, set its location to (0,0).

2. Create a list of all images with no location set, that have at least one neighbor
with a set location.

3. For each tile from this list, the score is determined as the sum of match scores of all
agreeing offsets to neighbor tiles with locations. The tile with the highest overall
score is chosen, and its location is computed and set.

4. Repeat steps 2 and 3 until all locations are determined.

42

7.4. Version 4: Match Multiple Neighbor Tiles With Added Offset Statistics

7.4 Version 4: Match Multiple Neighbor Tiles With
Added Offset Statistics

Version 4 combines offset statistics of Version 2 with the multi-neighbor offset combination
of Version 3. The implementation is similar to Version 3, with the offset scores being
replaced by the combined score introduced in Section 7.2, defined as MScore = PCScore∗
P (x) ∗ P (y), where PCScore is the phase correlation match score, and P (x) and P (y)
are the probabilities associated with the respective offsets.

43

CHAPTER 8
Global Stitching Evaluation

Evaluation of stitching results is a challenging task. Complicating factors are the size of
the image sets, the large number of possible solutions, and most of all, the uncertainty of
whether an optimal (or even reasonably good) solution exists, given the challenges posed
by distortion. To evaluate the results of algorithms introduced in Chapter 7, several
metrics were developed that indicate different qualities of the resulting fused image.
These metrics rely on the results of the utilized image registration algorithm and thus
can not be applied to fused images produced by other programs. Additionally, manual
inspection and comparison were utilized to compare the results to state-of-the-art tools.
To improve legibility, the algorithms Version 1 through 4 are henceforth abbreviated as
V1-V4.

8.1 Image Sets
The image sets for the evaluation of global stitching algorithms consist of the two
previously introduced test sets and one additional image set. While image sets from a
range of different SEMs would be optimal for evaluation, only one SEM could be used to
create the image sets, and no suitable public image sets were available. Thus, all three
image sets used for evaluation were produced by the same SEM. It can thus be argued,
that the algorithms introduced in this work are optimized for the specific flaws of this
SEM. However, while designing and improving the global stitching algorithms, special
care was taken to implement the algorithms as independent of the utilized hardware as
possible.

Of the utilized image sets, the first two were already introduced in Chapter 5 to evaluate
image registration algorithms. Additionally, a third test set was created. The image
quality of this third test set is between the two previously introduced test sets, albeit
with higher variability in stage movement accuracy. While using more image sets would
improve the significance of the results, the expensive and time-consuming nature of the

45

8. Global Stitching Evaluation

sample preparation and image acquisition processes prevented the creation of additional
sets.

8.2 Evaluation Methodology
Several evaluation metrics have been utilized to reflect different requirements depending on
the intended use case of the final fused image. The automated evaluation was conducted
using two metrics, exact offset count and absolute offset deviation. Since these metrics
depend on metadata such as the underlying image registration results, using these metrics
was limited to the algorithms developed in this work. Additionally, a comprehensive
manual evaluation was conducted to compare the results of these algorithms to state-
of-the-art tools. During the manual evaluation, errors encountered during the visual
inspection were assigned to one of four categories, depending on the severity of the error.
The subsequent sections describe the metrics for automated evaluation and the manual
evaluation in detail.

8.2.1 Exact Offset Count
This metric computes the number of exact offsets divided by the total number of offsets.
An exact offset, in this case, means that an image’s offset to a given neighbor in the fused
image is equal to the offset computed by the utilized image registration algorithm. Since
many computed offsets will be inaccurate in most image sets, this score is not expected
to reach 100%. Furthermore, even if all offsets computed by the image registration
algorithm would be correct, distortion would make it impossible to fuse the complete
image perfectly in all but the best quality image sets. As such, this metric is an indicator
of how many of the offsets in the fused image are expected to be accurate within a
predefined tolerance (1 or 2 pixels in this evaluation). This metric strictly divides the
offsets into the categories “correct” and “incorrect” and labels minor deviations as wrong,
which may not reflect subjective judgment when manually inspecting a fused image.

8.2.2 Absolute Offset Deviation
This metric computes the total sum of pixels that offsets in the fused image deviate from
their offset as computed by the image registration algorithm. As with the previously
introduced metric, this metric assumes the image registration algorithm is always correct.
Since this will never be the case in real-world scenarios, the computed score on its own is
irrelevant. Only differences between algorithms’ scores should be considered. Compared
to exact offset count, the results of this metric are closer to an impression gained by
manual inspection, as minor deviations influence the score less than large ones.

8.2.3 Manual Evaluation
A thorough manual evaluation was used to compare the results of algorithms introduced
in this work to each other and to state-of-the-art tools. The main reason for choosing this

46

8.2. Evaluation Methodology

approach was that the previously discussed metrics to quantify and compare results of
algorithms V1 to V4 relied on the results of the image registration algorithm as well as on
being able to identify where individual tiles were placed in the fused image. Especially in
the case of MS-ICE, this was not considered feasible as the source code was not available
and technical details of the project file were not available at the time. Because of the
time-consuming nature of this manual evaluation, two state-of-the-art tools were chosen
for comparison. Details of this preselection are discussed in Section 8.4.

To create the fused images, V1 to V4 and MIST were configured to apply no warping
or blending of images. This reduced the overall image quality but simplified spotting
errors. These aspects could not be configured for MS-ICE, giving MS-ICE a significant
advantage in the scope of this evaluation.

Manual evaluation posed several challenges. Most importantly, manually inspecting
multiple gigapixels worth of noisy image data leads to some errors remaining undetected.
Furthermore, the exact length of a tearing error was often hard to determine, as was
the correct placement of a given tile. Determining the maximum amount of tearing to a
pixel-exact value was not feasible, as the misplacement offset varied along most tearing
errors. To be able to quantify the results, errors in the fused image were assigned to one
of the following classifications:

1. Irrelevant errors: Errors outside the IC area, usually caused by stage movement
induced parallax effects between IC area and stage surface background.

2. Small errors: Tearing where the offset between two tiles is small enough that correct
placement can be easily determined and possibly fixed using minor warping of the
affected images. One example would be horizontal tearing of vertical lanes, where
the offset is so small, that the offset to the correct placement of affected traces
is smaller than the offset to the next parallel trace. Examples of small errors are
shown in Figure 8.1.

3. Medium errors: Tearing or tile misplacement, where correct placement is not
immediately obvious, for example, when the offset is large enough for parallel traces
to appear closer to a wrong offset than the correct offset when considering only a
single trace. In the absence of smaller features or tearing of individual traces or
features, subjective estimation of the amount of displacement was used to assign
the correct category in line with category assignments in other areas of the same
image set. Two such errors are shown in Figure 8.2.

4. Large errors: Tearing or tile misplacement, where correct placement is hard or
impossible to determine, or where misplacement obscures significant features of the
IC, such as vias. Two large errors are shown in Figure 8.3.

Cases where it was not clear whether an error had been made by the algorithm were not
counted. Errors that fit several of the categories were assigned the worst matching rating.

47

8. Global Stitching Evaluation

Figure 8.1: Two examples of small errors. In both cases, the traces are still partially
connected and close to their correct position.

Figure 8.2: Examples for medium errors: In the left image, the correct offset for a given
trace is as close as the offset required to connect the trace to the adjacent, parallel trace.
On the right, the offset to the correct solution is as large as other medium errors in the
same image set.

48

8.3. Evaluation Results for Exact Offset Count and Absolute Offset Deviation

Figure 8.3: Examples for two large errors: in the left image, the tile was significantly
misplaced. In the right image, misalignment of the tile hides significant features.

To assure equal scrutiny in the assessment of all tested algorithms and stitching tools,
the fused images were split into areas of 4400x4400 pixels and composed into images
showing the same area for each algorithm, as depicted in Figure 8.4. Efforts were made to
count each tearing error or misplacement exactly once where possible, except for tearing
that crossed the boundaries of the currently inspected area, as tracing errors across area
borders would have made manual evaluation prohibitively time-consuming. Investigation
of a subset of areas showed that this type of double-counting affected the evaluated
algorithms proportionally to the number of errors in a given region. While the absolute
number of errors may not be perfectly exact, the relative differences between algorithms
are still expected to be sufficiently accurate.

Furthermore, while the distinction between small and medium errors was easy to determine
in most cases, the decision of when to place an error in the medium or large category
was subjective in some borderline cases. Special care was taken to apply the same
classification rules to all algorithms.

8.3 Evaluation Results for Exact Offset Count and
Absolute Offset Deviation

The following sections discuss the evaluation results for exact offset count and absolute
offset deviation for each of the three test sets. Differences between the algorithm’s scores
show that statistics affect absolute offset deviation significantly, while the multi-edge
approach of V3 and V4 improves exact offset count scores with a tolerance of two pixels.
V1 delivered the best results for exact offset count with a tolerance of only one pixel in 2
of 3 test sets while also achieving the second-best score in the third test set.

49

8. Global Stitching Evaluation

Figure 8.4: Example of a composed image for comparison and evaluation. The lower
right section shows how MS-ICE warped tiles, unlike the other evaluated tools.

8.3.1 Test Set 1

The results for test set 1 are shown in Figure 8.5. Images of test set 1 show high contrast,
low noise, and minimal distortion, perfect conditions for the image registration algorithm.
Therefore, one would expect that additional sources of positioning information, such as
that stemming from statistical analysis over all computed offsets, to add little additional
value. This is precisely what the results for this test set show. Algorithm version 3,
which matches multiple neighbors without utilizing additional offset statistics, yields the
lowest absolute offset deviation and the highest exact offset count with a tolerance of
2 pixels. V1 beats V3 when allowing for no offset deviation (tolerance 1 pixel) while
reducing scores for the other metrics.

8.3.2 Test Set 2

Unlike test set 1, the typical characteristics of test set 2 are low contrast and a high
amount of noise. Also, several images exhibit significant distortion. When comparing the
exact offset count metrics with test set 1, the algorithms yield very similar results, as
shown in Figure 8.6. The multi-neighbor stitching approaches outperform algorithms V1
and V2, with t1 values similar or better and t2 values distinctively better. Regarding

50

8.4. Preselection for Manual Evaluation

Figure 8.5: Evaluation results for test set 1, best results highlighted blue. The exact
offset count was computed with a tolerance of one pixel (t1) and two pixels (t2).

Figure 8.6: Evaluation results for test set 2, best results highlighted blue. The exact
offset count was computed with a tolerance of one pixel (t1) and two pixels (t2).

absolute offset deviation, the algorithms V2 and V4, which use statistics to improve their
results, clearly outperform V1 and V3, which only rely on the match score computed by
the image registration algorithm.

8.3.3 Test Set 3
As shown in Figure 8.7, test set 3 has a different winner for each metric, with V1 yielding
the best results for exact offsets with a maximum tolerance of 1 pixel, V3 scoring best
with a tolerance of 2 pixels, and V4 minimizing total offset deviation better than the
other algorithms. This demonstrates the trade-off between using exact offset matches as
computed by the image registration algorithm and minimizing offset error accumulation
to reduce the intensity of tearing.

8.4 Preselection for Manual Evaluation
Due to the time-consuming nature of manual evaluation, comparison to state-of-the-art
software was limited to two of the tools introduced in Chapter 3: MIST and MS-ICE.

51

8. Global Stitching Evaluation

Figure 8.7: Evaluation results for test set 3, best results highlighted blue. The exact
offset count was computed with a tolerance of one pixel (t1) and two pixels (t2).

These tools were selected for their superior performance compared to the other candidates
when run on the test sets. The subsequent sections describe all candidates and briefly
outline details of their performance.

8.4.1 Fiji/ImageJ Plugins for Microscopy Images

Fiji is an open-source project based on ImageJ. At the time of writing, it is one of the few
open-source tools capable of handling hundreds of individual images, even if the resulting
stitched image does not fit into RAM.

Three relevant plugins are optimized for microscopy images: The Grid/Collection stitching
algorithm, which is included by default, its successor BigStitcher and the Microscopy
Image Stitching Tool (MIST) plugin published by the National Institute of Science and
Technology (NIST) [32, 33, 39–41].

8.4.2 Grid/Collection Stitching Plugin

The Grid/Collection stitching plugin created by Preibisch et al. [33] utilizes cross-
correlation to match image pairs and subsequently a global optimization algorithm to
compose the final image. Unlike many other tools, this software is capable of stitching
2D and 3D images. For IC images with low noise and high contrast, the resulting fused
images produced by Fiji are adequate in many cases, but as can be seen in Figure 8.8,
even with high-quality images, missing tiles are not unusual. For IC images with low
contrast and low signal-to-noise ratio (SNR), the results are significantly worse, as shown
in Figure 8.9. In these cases, the algorithm often decides not to place tiles in the fused
image or to draw them on top of other tiles, leading to large black areas. It is possible
to manually place the missing tiles by editing the tile configuration file generated by
Fiji, but this would be exceedingly time-consuming in cases with many misplaced tiles.
Additionally, this program requires knowledge of the overlap parameter, the expected
percentage of overlap between adjacent tiles.

52

8.4. Preselection for Manual Evaluation

Figure 8.8: Missing tiles in test set 1 stitched with Grid/Collection stitching Fiji-plugin

8.4.3 Microscopy Image Stitching Tool (MIST)

This Fiji plugin was published by Chalfoun et al. around the same time the tools and
algorithms for this work were developed [32, 40, 41]. It follows similar ideas in principle:
Images are matched pairwise. Overlap, and other parameters are set manually or detected
automatically. A model of the stage movement is then inferred from the computed offsets.
Subsequently, a spanning tree is generated that follows the highest-rated stitching results
in combination with the best tile position deduced from the stage movement model. This
approach can lead to misalignments, as shown in Figure 8.10.

While MIST writes several intermediate files before stitching the result, manual correction
of the computed results is by no means trivial, as these files have to be edited with a text
editor without any additional software support, for example in finding correct offsets.

8.4.4 BigStitcher

A recently announced Fiji plugin that succeeds the previously discussed Grid/Collection
Stitching plugin has been published by Preibisch et al. around the time of writing of
this document [39]. While this Plugin is optimized for microscopy images of biological
research, the published description, especially of its new global optimization algorithm,
appears promising. At the time of writing, the available version is a beta release, and it
was not possible to generate a fused image from the test sets due to runtime errors.

53

8. Global Stitching Evaluation

Figure 8.9: Missing tiles in test set 2 stitched with Grid/Collection stitching Fiji-plugin

(a) Test set 1 (b) Test set 2

Figure 8.10: Examples of misalignments in both test sets when stitched with MIST

54

8.4. Preselection for Manual Evaluation

Figure 8.11: Misalignment in the fused image produced by MS-ICE for test set 2

8.4.5 Microsoft Image Composite Editor (MS-ICE)
This software is published by Microsoft and is free to use. It is optimized for panoramas,
but the settings support adjustment appropriate for stitching microscopic images. Unlike
the Fiji plugins, no intermediate output is generated, and besides changing projection
type and cropping, no manual correction is possible.

This software uses warping and blending which results in a visually pleasing fused image,
at the cost of hard-to-spot errors. One example of such an error is shown in Figure 8.11.
In some cases, warping may become so severe that traces can not be aligned to a straight
design grid anymore, thus complicating subsequent steps of the reverse engineering
process. Another significant drawback of MS-ICE is that in more challenging IC image
sets, the software may just quit with an error message, where other tools would at least
create a best-effort fused image with only a few areas unsuitable for reverse engineering.

Manual correction of stitching errors may be possible in theory by changing the .spj file
created by MS-ICE, but due to the transformation matrices in the file, stored data would
have to be converted into human-readable format first.

8.4.6 PTGui Pro
PTGui Pro is a closed source panorama stitching tool with a free fully-featured trial
version available (version 11.16 at the time of writing). A guide on how to stitch
microscopy images with PTGui is available online [43]. However, the test sets used in this
work failed to stitch automatically, with the amount of manual intervention necessary
to assist PTGui in fusing the complete image being prohibitively high. The automated
stitching results are shown in Figure 8.12.

55

8. Global Stitching Evaluation

Figure 8.12: Stitching result of PTGui on test set 1

8.4.7 Teorex Photostitcher
Teorex advertises its photo stitching tool’s ability to stitch microscopy images, even
though this is not the main focus of the application [44]. This could not be verified, as
Photostitcher version 2.0 crashed without error messages when attempting to stitch the
test sets.

8.5 Manual Evaluation Results
The subsequent sections discuss the manual evaluation results for each of the three test
sets. Overall the results show that the algorithms introduced in this work outperform
MIST on all three test sets and MS-ICE on the two test sets with worse contrast and
higher noise levels. MS-ICE performed best on the high-contrast test set 1, with the
caveat that, unlike its competitors, MS-ICE used blending and warping.

8.5.1 Manual Evaluation of Test Set 1
The results for each tested tool/algorithm are shown in Figure 8.13. Judging from the
previous evaluations, V1 and V3 were expected to attain better scores than V2 and V4.

56

8.5. Manual Evaluation Results

Figure 8.13: Manual evaluation results for test set 1.

This is only partially reflected in this metric, with both of these algorithms having a lower
number of small errors as well as a lower total number of errors. In turn, both introduced
more large errors. V1 to V4 all outperform MIST, which by this metric has significantly
more medium and large errors, with roughly the same number of small and irrelevant
errors. All of these algorithms were outperformed by Microsoft Image Composite Editor,
the fused image of which did not exhibit any detectable errors in areas showing the IC
surface. However, it is important to note that, unlike the other algorithms, MS-ICE was
allowed to warp and blend images, which is bound to have a significant effect, especially
on the number of small and medium errors.

8.5.2 Manual Evaluation of Test Set 2

For test set 2, V1 and V3 show a lower number of medium and large errors when compared
with V2 and V4. MIST again performed significantly worse than algorithms V1 to V4,
with a higher number of medium and large errors. Interestingly, MS-ICE also scored
worse than algorithms V1-V4 when considering the sum of small, medium and large
errors, albeit by a much lower margin. MS-ICE performed much better in the category
of irrelevant errors, which is most likely due to blending and warping. The previously
listed Figure 8.4 shows how much MS-ICE warped the tiles and overall image compared
to its competitors.

57

8. Global Stitching Evaluation

Figure 8.14: Manual evaluation results for test set 2.

8.5.3 Manual Evaluation of Test Set 3
All tested tools and algorithms struggled with some unique challenges posed by this
image set. MS-ICE failed to provide a usable result, as shown in Figure 8.15. Since
the remaining five candidates struggled with two particular rows of images, these rows
were removed from the evaluation. As Figure 8.16 shows, V1 and V3 are slightly ahead
of V2 and V4. MIST yielded comparable results; it scored slightly worse with the
highest number of large and small errors but the lowest number of medium and irrelevant
errors. When considering the total number of small, medium and large errors, V1-V4 all
outperformed MIST.

8.6 Discussion
The algorithms introduced in this work improve upon the two evaluated state-of-the-art
tools in two of the three tested image sets. Compared to the state-of-the-art open-source
tool MIST, these algorithms achieve better results for all three test sets. The most
significant improvement stems from modifying the minimum spanning tree approach used
in V1 to use all available information on neighboring tiles when determining the location
of a given tile in the algorithms V3 and V4. V2 never scored best between these four
algorithms. The differences between the four algorithms are outlined by the two different
metrics used in the first part of this evaluation, showing the trade-off between absolute
accuracy (all or nothing) versus minimizing the accumulation of errors, essentially by
splitting large offset errors into multiple smaller offset errors.

58

8.6. Discussion

Figure 8.15: Fused image composed by MS-ICE.

Figure 8.16: Manual evaluation results for test set 3.

59

CHAPTER 9
Conclusion and Future Directions

of Work

Reverse engineering integrated circuits (ICs) requires sufficiently detailed imaging data,
with modern IC manufacturing processes producing feature sizes too small for optical
microscopes. The cost of state-of-the-art scanning electron microscopes (SEMs) can be
prohibitive for the purpose of reverse engineering ICs, with used SEMs being more readily
available and affordable at the cost of lower image quality. To lower the entry bar to this
type of research, better image processing algorithms are required to allow the use of such
lower-quality images.

This work introduced four algorithms to compose individual scanning electron microscope
images into a fused image, with the explicit purpose of providing a basis for reverse
engineering integrated circuits. These algorithms were shown to work particularly well
for images with high noise and low contrast. Compared to two state-of-the-art tools,
they outperformed the proprietary tool Microsoft Image Composite Editor in 2 of the
3 test sets and the open-source tool MIST in all 3 test sets. While the number of test
sets was limited, these results are promising and show that extending the minimum
spanning tree approach by combining multiple edges in certain situations can improve
results significantly. This approach decreased the number of large errors, in some cases
at the cost of introducing multiple smaller errors.

The results of this work may be extended further by improving upon the utilized offset
statistics. However, more image sets from different microscopes are required to avoid
overfitting such algorithms to one particular microscope. Furthermore, subsequent image
sets of one SEM could be used to automatically adjust these statistics to the unique
properties of the microscope’s stage movement for improved results of subsequent image
fusion. Finally, given enough image data and computing resources, machine learning
could improve image registration and stitching error correction.

61

APPENDIX A
Detailed Evaluation Results for
Image Registration Algorithms

The following tables show the evaluation data across all evaluated parameters. The
SIFT evaluation in Table A.1 differs from the other evaluations in that the test sets were
reduced to 100 random image pairs to reduce the overall required computation time.
Bold font indicates the best results.

Table A.1: Sift Evaluation Summary

Test Set 1 Test Set 2
Contrast

Threshold
Edge

Threshold Correct Avg Exec Time Correct Avg Exec Time

0.01 8 100 306.1453 94 53.7046
0.01 9 100 320.5279 94 55.4632
0.01 10 100 339.2553 95 56.3139
0.01 11 100 344.3994 95 56.7571
0.01 12 100 349.2112 95 57.0676
0.02 8 100 275.1676 85 6.4590
0.02 9 100 285.0985 85 6.5390
0.02 10 100 291.8855 85 6.5690
0.02 11 100 306.9043 85 6.6304
0.02 12 100 316.3945 85 6.6561
0.03 8 100 188.9968 79 3.3813
0.03 9 100 193.9263 79 3.3922
0.03 10 100 199.0301 79 3.4168
0.03 11 100 203.3335 79 3.4157
0.03 12 100 206.7627 79 3.4210

63

A. Detailed Evaluation Results for Image Registration Algorithms

0.04 8 100 93.4027 78 2.5574
0.04 9 100 96.4854 78 2.5605
0.04 10 100 99.5494 78 2.5618
0.04 11 100 102.0732 78 2.5651
0.04 12 100 104.6575 78 2.5676
0.05 8 100 32.4341 75 2.3470
0.05 9 100 34.0302 75 2.3547
0.05 10 100 35.1621 75 2.3663
0.05 11 100 36.4704 75 2.3454
0.05 12 100 37.4885 75 2.3549

Table A.2: ORB Evaluation Summary

Test Set 1 Test Set 2
WTA_K Fast Thresh. Correct Avg Exec Time Correct Avg Exec Time

2 5 349 0.5175 268 0.2433
2 6 350 0.4740 270 0.2138
2 7 349 0.4262 270 0.1933
2 8 351 0.3898 271 0.1804
2 9 350 0.3599 267 0.1727
2 10 349 0.3354 271 0.1700
2 11 347 0.3175 275 0.1859
2 12 351 0.3089 270 0.1845
2 13 349 0.2863 271 0.1631
2 14 350 0.2695 267 0.1877
2 15 348 0.3245 270 0.1402
2 16 349 0.2930 271 0.1403
2 17 348 0.2572 270 0.1331
2 18 349 0.2462 270 0.1303
2 19 346 0.2354 270 0.1289
2 20 350 0.2204 273 0.1270
2 21 350 0.2197 270 0.1282
2 22 349 0.2144 268 0.1335
2 23 348 0.2084 268 0.1269
2 24 348 0.2086 271 0.1238
2 25 348 0.1991 267 0.1236
3 5 338 0.5617 264 0.2703
3 6 337 0.4656 268 0.2469
3 7 339 0.4404 263 0.2149
3 8 341 0.4265 268 0.1980
3 9 337 0.3527 266 0.1837

64

3 10 339 0.3199 267 0.1721
3 11 336 0.2990 263 0.1593
3 12 341 0.2782 265 0.1579
3 13 341 0.2635 263 0.1522
3 14 335 0.2554 262 0.1482
3 15 341 0.2461 263 0.1368
3 16 336 0.2210 263 0.1360
3 17 338 0.2116 264 0.1328
3 18 336 0.2039 264 0.1313
3 19 338 0.1925 265 0.1292
3 20 339 0.1899 262 0.1276
3 21 337 0.1894 263 0.1268
3 22 339 0.1785 260 0.1261
3 23 337 0.1767 261 0.1244
3 24 339 0.1673 263 0.1228
3 25 340 0.1640 263 0.1222
4 5 335 0.4850 265 0.2588
4 6 334 0.4529 265 0.2235
4 7 334 0.4111 267 0.1927
4 8 334 0.3787 264 0.1780
4 9 335 0.3652 265 0.1664
4 10 332 0.3394 266 0.1575
4 11 333 0.3109 264 0.1505
4 12 332 0.2905 263 0.1452
4 13 336 0.2669 263 0.1413
4 14 335 0.2498 265 0.1418
4 15 334 0.2410 262 0.1348
4 16 335 0.2298 263 0.1359
4 17 334 0.2132 264 0.1320
4 18 334 0.2077 264 0.1305
4 19 334 0.1949 266 0.1278
4 20 333 0.1864 266 0.1271
4 21 332 0.1812 268 0.1269
4 22 333 0.1835 265 0.1269
4 23 335 0.1829 269 0.1285
4 24 332 0.1663 266 0.1287
4 25 333 0.1655 265 0.1250

65

A. Detailed Evaluation Results for Image Registration Algorithms

Table A.3: Phase Correlation Evaluation Summary

Test Set 1 Test Set 2
Overlap Correct Avg Exec Time Correct Avg Exec Time

0.1 0 0.0507 0 0.0472
0.15 419 0.0942 0 0.0881
0.2 420 0.0950 0 0.0915

0.25 420 0.1619 318 0.1573
0.3 420 0.1496 346 0.1452

0.35 420 0.1786 356 0.1697
0.4 419 0.2235 356 0.2147

0.45 0 0.3603 352 0.3376
0.5 0 0.2974 351 0.2984

0.55 0 0.3289 353 0.3242
0.6 0 0.3655 351 0.3559

Table A.4: Cross-Correlation Evaluation Summary

Test Set 1 Test Set 2
Expected
Overlap

Minimal
Overlap Correct Avg Exec Time Correct Avg Exec Time

0.1 0.1 0 0.0796 0 0.0754
0.15 0.1 0 0.1355 0 0.1239
0.2 0.1 420 0.1971 0 0.1865

0.25 0.1 415 0.2839 0 0.2547
0.3 0.1 339 0.3430 226 0.3201

0.35 0.1 314 0.4017 242 0.3720
0.4 0.1 306 0.4590 241 0.4327

0.45 0.1 75 0.5445 253 0.5078
0.5 0.1 0 0.6167 266 0.5751

0.55 0.1 0 0.6724 276 0.6247
0.6 0.1 0 0.7360 287 0.6878

0.65 0.1 0 0.7773 300 0.7406
0.15 0.15 0 0.1225 0 0.1205
0.2 0.15 420 0.1851 0 0.1782

0.25 0.15 415 0.2577 0 0.2414
0.3 0.15 339 0.3071 165 0.2899

0.35 0.15 314 0.4050 254 0.3779
0.4 0.15 306 0.4329 251 0.4098

0.45 0.15 0 0.5111 264 0.4817
0.5 0.15 0 0.5628 271 0.5330

0.55 0.15 0 0.6685 284 0.6302

66

0.6 0.15 0 0.6893 296 0.6543
0.65 0.15 0 0.7932 307 0.7586
0.2 0.2 420 0.1970 0 0.1922

0.25 0.2 415 0.2583 0 0.2461
0.3 0.2 339 0.4054 8 0.3821

0.35 0.2 314 0.3793 263 0.3499
0.4 0.2 279 0.4498 265 0.4229

0.45 0.2 0 0.5088 271 0.4782
0.5 0.2 0 0.7214 277 0.6819

0.55 0.2 0 0.6321 289 0.6013
0.6 0.2 0 0.7260 301 0.6789

0.65 0.2 0 0.7291 313 0.6856
0.25 0.25 415 0.2460 0 0.2363
0.3 0.25 339 0.3087 2 0.2903

0.35 0.25 314 0.3441 268 0.3246
0.4 0.25 49 0.4092 273 0.3720

0.45 0.25 0 0.5001 275 0.4612
0.5 0.25 0 0.5432 283 0.5112

0.55 0.25 0 0.6146 298 0.5730
0.6 0.25 0 0.6797 308 0.6326

0.65 0.25 0 0.7342 323 0.6871
0.3 0.3 339 0.3078 0 0.2938

0.35 0.3 314 0.3620 272 0.3445
0.4 0.3 0 0.4060 278 0.3815

0.45 0.3 0 0.4559 282 0.4394
0.5 0.3 0 0.5411 289 0.5035

0.55 0.3 0 0.5608 302 0.5227
0.6 0.3 0 0.6716 314 0.6280

0.65 0.3 0 0.6893 312 0.6586
0.35 0.35 314 0.3374 279 0.3194
0.4 0.35 0 0.4085 283 0.3832

0.45 0.35 0 0.4379 288 0.4122
0.5 0.35 0 0.5098 297 0.4827

0.55 0.35 0 0.7151 309 0.6815
0.6 0.35 0 0.6316 324 0.6000

0.65 0.35 0 0.7217 18 0.6840
0.4 0.4 0 0.3934 288 0.3778

0.45 0.4 0 0.4529 296 0.4225
0.5 0.4 0 0.5069 303 0.4763

0.55 0.4 0 0.7150 315 0.6790
0.6 0.4 0 0.6126 321 0.5648

67

A. Detailed Evaluation Results for Image Registration Algorithms

0.65 0.4 0 0.6658 9 0.6348
0.45 0.45 0 0.4113 298 0.3820
0.5 0.45 0 0.4620 305 0.4261

0.55 0.45 0 0.5418 323 0.4923
0.6 0.45 0 0.5635 24 0.5270

0.65 0.45 0 0.6668 5 0.6036
0.5 0.5 0 0.4275 315 0.4079

0.55 0.5 0 0.5124 324 0.4770
0.6 0.5 0 0.7150 10 0.6791

0.65 0.5 0 0.6038 3 0.5698
0.55 0.55 0 0.5036 211 0.4774
0.6 0.55 0 0.5395 5 0.5101

0.65 0.55 0 0.5957 0 0.5596
0.6 0.6 0 0.5003 4 0.4722

0.65 0.6 0 0.7013 0 0.6724
0.65 0.65 0 0.5425 0 0.5111

Table A.5: Cross-Covariance Evaluation Summary

Test Set 1 Test Set 2
Expected
Overlap

Minimal
Overlap Correct Avg Exec Time Correct Avg Exec Time

0.1 0.1 0 0.0828 0 0.0810
0.15 0.1 0 0.1344 0 0.1363
0.2 0.1 420 0.2017 0 0.2009

0.25 0.1 413 0.2853 0 0.2752
0.3 0.1 329 0.3412 327 0.3289

0.35 0.1 307 0.3965 352 0.3867
0.4 0.1 299 0.4629 351 0.4498

0.45 0.1 73 0.5437 343 0.5360
0.5 0.1 0 0.6120 331 0.5941

0.55 0.1 0 0.6670 323 0.6720
0.6 0.1 0 0.7352 316 0.7226

0.65 0.1 0 0.7881 315 0.7772
0.15 0.15 0 0.1268 0 0.1354
0.2 0.15 420 0.1869 0 0.1941

0.25 0.15 413 0.2511 0 0.2615
0.3 0.15 329 0.3094 230 0.2936

0.35 0.15 307 0.4022 353 0.3789
0.4 0.15 299 0.4377 351 0.4069

0.45 0.15 0 0.5118 343 0.4749

68

0.5 0.15 0 0.5655 331 0.5240
0.55 0.15 0 0.6741 323 0.6366
0.6 0.15 0 0.6985 316 0.6561

0.65 0.15 0 0.8008 315 0.7473
0.2 0.2 420 0.1988 0 0.1881

0.25 0.2 413 0.2513 0 0.2417
0.3 0.2 329 0.4046 8 0.3812

0.35 0.2 307 0.3757 350 0.3456
0.4 0.2 272 0.4496 351 0.4147

0.45 0.2 0 0.5099 343 0.4795
0.5 0.2 0 0.7177 331 0.6780

0.55 0.2 0 0.6374 323 0.6113
0.6 0.2 0 0.7184 316 0.6854

0.65 0.2 0 0.7373 315 0.6929
0.25 0.25 413 0.2523 0 0.2393
0.3 0.25 329 0.3042 1 0.2904

0.35 0.25 307 0.3511 348 0.3247
0.4 0.25 45 0.4062 351 0.3729

0.45 0.25 0 0.5054 343 0.4670
0.5 0.25 0 0.5490 331 0.5101

0.55 0.25 0 0.6139 323 0.5606
0.6 0.25 0 0.6773 316 0.6295

0.65 0.25 0 0.7408 315 0.6848
0.3 0.3 329 0.3006 0 0.2878

0.35 0.3 307 0.3686 347 0.3426
0.4 0.3 0 0.4125 351 0.3813

0.45 0.3 0 0.4681 343 0.4379
0.5 0.3 0 0.5445 331 0.5093

0.55 0.3 0 0.5717 323 0.5306
0.6 0.3 0 0.6790 316 0.6296

0.65 0.3 0 0.7121 303 0.6656
0.35 0.35 307 0.3450 347 0.3207
0.4 0.35 0 0.4068 351 0.3840

0.45 0.35 0 0.4359 343 0.4097
0.5 0.35 0 0.5169 331 0.4797

0.55 0.35 0 0.7187 323 0.6741
0.6 0.35 0 0.6468 317 0.6061

0.65 0.35 0 0.7226 17 0.6755
0.4 0.4 0 0.4027 351 0.3765

0.45 0.4 0 0.4553 343 0.4186
0.5 0.4 0 0.5135 331 0.4789

69

A. Detailed Evaluation Results for Image Registration Algorithms

0.55 0.4 0 0.7134 323 0.6765
0.6 0.4 0 0.6205 314 0.5708

0.65 0.4 0 0.6748 8 0.6315
0.45 0.45 0 0.4103 343 0.3860
0.5 0.45 0 0.4679 331 0.4361

0.55 0.45 0 0.5433 323 0.5095
0.6 0.45 0 0.5646 25 0.5318

0.65 0.45 0 0.6757 4 0.6391
0.5 0.5 0 0.4360 331 0.4077

0.55 0.5 0 0.5158 322 0.4786
0.6 0.5 0 0.7113 9 0.6810

0.65 0.5 0 0.6108 2 0.5694
0.55 0.55 0 0.5107 210 0.4768
0.6 0.55 0 0.5481 4 0.5139

0.65 0.55 0 0.6070 0 0.5638
0.6 0.6 0 0.5111 3 0.4825

0.65 0.6 0 0.7151 0 0.6815
0.65 0.65 0 0.5494 0 0.5145

Table A.6: Sum of Squared Differences Evaluation Summary

Test Set 1 Test Set 2
Expected
Overlap

Minimal
Overlap Correct Avg Exec Time Correct Avg Exec Time

0.1 0.1 0 0.0792 0 0.0774
0.15 0.1 0 0.1353 0 0.1334
0.2 0.1 420 0.1977 0 0.1993

0.25 0.1 415 0.2795 0 0.2697
0.3 0.1 339 0.3394 230 0.3386

0.35 0.1 312 0.3908 247 0.3985
0.4 0.1 306 0.4592 243 0.4601

0.45 0.1 75 0.5442 258 0.5438
0.5 0.1 0 0.6064 267 0.6004

0.55 0.1 0 0.6813 278 0.6679
0.6 0.1 0 0.7289 289 0.7359

0.65 0.1 0 0.7691 302 0.7788
0.15 0.15 0 0.1266 0 0.1237
0.2 0.15 420 0.1836 0 0.1862

0.25 0.15 415 0.2515 0 0.2593
0.3 0.15 339 0.3097 169 0.3101

0.35 0.15 312 0.4002 259 0.3951

70

0.4 0.15 306 0.4301 252 0.4282
0.45 0.15 0 0.5137 268 0.5129
0.5 0.15 0 0.5646 274 0.5643

0.55 0.15 0 0.6725 286 0.6692
0.6 0.15 0 0.7018 299 0.7041

0.65 0.15 0 0.7971 313 0.7988
0.2 0.2 420 0.1929 0 0.1957

0.25 0.2 415 0.2560 0 0.2604
0.3 0.2 339 0.3981 8 0.4000

0.35 0.2 312 0.3647 265 0.3729
0.4 0.2 279 0.4458 267 0.4537

0.45 0.2 0 0.5087 273 0.5025
0.5 0.2 0 0.7090 281 0.7077

0.55 0.2 0 0.6355 290 0.6407
0.6 0.2 0 0.7198 302 0.7228

0.65 0.2 0 0.7315 316 0.7342
0.25 0.25 415 0.2438 0 0.2509
0.3 0.25 339 0.3092 2 0.3033

0.35 0.25 312 0.3429 270 0.3480
0.4 0.25 49 0.4014 275 0.4028

0.45 0.25 0 0.4957 278 0.4960
0.5 0.25 0 0.5437 287 0.5425

0.55 0.25 0 0.6075 300 0.6123
0.6 0.25 0 0.6668 314 0.6769

0.65 0.25 0 0.7294 325 0.7314
0.3 0.3 339 0.3021 0 0.3042

0.35 0.3 312 0.3631 273 0.3606
0.4 0.3 0 0.4043 280 0.4088

0.45 0.3 0 0.4619 284 0.4600
0.5 0.3 0 0.5397 292 0.5479

0.55 0.3 0 0.5613 303 0.5618
0.6 0.3 0 0.6651 316 0.6720

0.65 0.3 0 0.6920 314 0.7002
0.35 0.35 312 0.3345 280 0.3370
0.4 0.35 0 0.4021 287 0.4023

0.45 0.35 0 0.4338 290 0.4369
0.5 0.35 0 0.5039 300 0.5088

0.55 0.35 0 0.7142 313 0.7080
0.6 0.35 0 0.6328 325 0.6386

0.65 0.35 0 0.7149 18 0.7268
0.4 0.4 0 0.4022 290 0.4013

71

A. Detailed Evaluation Results for Image Registration Algorithms

0.45 0.4 0 0.4474 297 0.4483
0.5 0.4 0 0.5019 303 0.5113

0.55 0.4 0 0.7131 316 0.7177
0.6 0.4 0 0.6135 322 0.6099

0.65 0.4 0 0.6733 9 0.6759
0.45 0.45 0 0.4086 300 0.4079
0.5 0.45 0 0.4579 306 0.4664

0.55 0.45 0 0.5436 324 0.5430
0.6 0.45 0 0.5630 24 0.5609

0.65 0.45 0 0.6717 5 0.6717
0.5 0.5 0 0.4364 316 0.4344

0.55 0.5 0 0.5071 325 0.5079
0.6 0.5 0 0.7080 10 0.7142

0.65 0.5 0 0.6079 3 0.6162
0.55 0.55 0 0.5039 212 0.5136
0.6 0.55 0 0.5434 5 0.5452

0.65 0.55 0 0.5949 0 0.5966
0.6 0.6 0 0.5086 4 0.5159

0.65 0.6 0 0.7170 0 0.7236
0.65 0.65 0 0.5430 0 0.5448

72

List of Figures

2.1 Simplified side view of an IC package. The die (blue) is connected to the lead
frame (grey) via bonding wires (yellow). Decapsulation removes the package
(black) to expose the die. 6

2.2 Charging effect causes increased brightness and distortion in areas with charge
build-up. 9

2.3 Examples of different stitching graphs in a 3x3 image grid. The start node is
highlighted blue. 11

2.4 Typical example for the accumulation of errors along stitching paths causing
tearing in the fused image. 12

4.1 Matched SIFT-Keypoints in two adjacent images of test set2 19
4.2 Matched ORB keypoints in two adjacent images of test set2 20
4.3 SqDiff_Normed output for the same two overlapping images shown in Sec-

tion 4.1. The most probable offset according to this algorithm is at location
(536, 427) with a match score of 0.0135331926867 21

4.4 Result of normed cross-correlation of two images of test set 2 with a small
number of repetitive features (left) vs a large number of repetitive features
(right) . 22

4.5 Comparison of cross-correlation and phase correlation results for the same
sections of images of test set 2. 24

5.1 Sample images from both test sets . 26
5.2 Example of an overlapping image pair where manual matching failed due to

the lack of significant features in the overlapping area 27
5.3 Example of an overlapping image pair where automated matching fails due to

the area of interest (upper 10% of the images) having a different translational
offset than the lower 90% that depict the stage surface of the microscope 27

5.4 Fused test set 2 images with indeterminate images highlighted red. 28

6.1 Results of AutoPar2 for test set 1 (left) and test set 2 (right) with 100000
random sample sets per sample size for algorithms phase correlation (green)
and cross-covariance (blue). 34

6.2 Results of AutoPar3 for test set 1 (left) and test set 2 (right) with 100000
random sample sets per sample size for cross-covariance. 35

73

7.1 Offset error accumulation leading to visible tearing in fused image. 39
7.2 Tile misplacement due to a wrong offset having the highest score. 39
7.3 Histogram with 15 bins for computed offsets in test set 1 and 2. 40
7.4 Demonstration of a 2-pixel offset deviation in test set 1. 42

8.1 Two examples of small errors. In both cases, the traces are still partially
connected and close to their correct position. 48

8.2 Examples for medium errors: In the left image, the correct offset for a given
trace is as close as the offset required to connect the trace to the adjacent,
parallel trace. On the right, the offset to the correct solution is as large as
other medium errors in the same image set. 48

8.3 Examples for two large errors: in the left image, the tile was significantly
misplaced. In the right image, misalignment of the tile hides significant
features. 49

8.4 Example of a composed image for comparison and evaluation. The lower right
section shows how MS-ICE warped tiles, unlike the other evaluated tools. 50

8.5 Evaluation results for test set 1, best results highlighted blue. The exact offset
count was computed with a tolerance of one pixel (t1) and two pixels (t2). . 51

8.6 Evaluation results for test set 2, best results highlighted blue. The exact offset
count was computed with a tolerance of one pixel (t1) and two pixels (t2). . 51

8.7 Evaluation results for test set 3, best results highlighted blue. The exact offset
count was computed with a tolerance of one pixel (t1) and two pixels (t2). 52

8.8 Missing tiles in test set 1 stitched with Grid/Collection stitching Fiji-plugin 53
8.9 Missing tiles in test set 2 stitched with Grid/Collection stitching Fiji-plugin 54
8.10 Examples of misalignments in both test sets when stitched with MIST . . 54
8.11 Misalignment in the fused image produced by MS-ICE for test set 2 . . . 55
8.12 Stitching result of PTGui on test set 1 . 56
8.13 Manual evaluation results for test set 1. 57
8.14 Manual evaluation results for test set 2. 58
8.15 Fused image composed by MS-ICE. 59
8.16 Manual evaluation results for test set 3. 59

74

List of Tables

5.1 Best scores for each tested algorithm. Score is the number of correctly
determined offsets. Average execution time was computed for each parameter
set. tmin and tmax are minimum and maximum average execution time of
parameter sets that produced optimal results, measured in seconds. Unlike
the other algorithms, SIFT’s maximum score is 100 due to the reduced image
set size. 30

6.1 Results of AutoPar1 for test set 1, best parameters as manually determined
in previous evaluation are bold. Parameters with score 0 have been removed.
AP1-Score represents the number of times a parameter led to the highest
match score, as computed by AutoPar1 32

6.2 Results of AutoPar1 for test set 2, best parameters as manually determined
in previous evaluation are bold. AP1-Score represents the number of times a
parameter led to the highest match score, as computed by AutoPar1 . . . 32

6.3 Results of AutoPar2 for test set 1, best parameters as manually determined in
previous evaluation are bold. AP2-Score is the mean match score computed
by AutoPar2. 33

6.4 Results of AutoPar2 for Testset2, best parameters as manually determined in
previous evaluation are bold. AP2-Score is the mean match score computed
by AutoPar2. 33

A.1 Sift Evaluation Summary . 63
A.2 ORB Evaluation Summary . 64
A.3 Phase Correlation Evaluation Summary 66
A.4 Cross-Correlation Evaluation Summary 66
A.5 Cross-Covariance Evaluation Summary . 68
A.6 Sum of Squared Differences Evaluation Summary 70

75

Bibliography

[1] Randy Torrance and Dick James. “The State-of-the-Art in Semiconductor Reverse
Engineering”. In: Proceedings of the 48th Design Automation Conference. DAC ’11.
San Diego, California: Association for Computing Machinery, 2011, 333–338. isbn:
9781450306362. doi: 10.1145/2024724.2024805. url: https://doi.org/
10.1145/2024724.2024805.

[2] Randy Torrance and Dick James. “The State-of-the-Art in IC Reverse Engineering”.
In: Cryptographic Hardware and Embedded Systems - CHES 2009. Ed. by Christophe
Clavier and Kris Gaj. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 363–
381. isbn: 978-3-642-04138-9.

[3] TSS Microscopy. Scanning Electron Microscopes, Browse our currently available
inventory of pre-owned, ReManufactured SEM microscopes for sale. Refine results by
searching for brand and price. If you don’t see what you need, please contact us, as we
may have it in-house or know where we can find it. https://tssmicroscopy.
com/instruments/categories/scanning-electron-microscopes/.
Aug. 2021. (Visited on 08/27/2021).

[4] A. V. Crewe et al. “Electron Gun Using a Field Emission Source”. In: Review
of Scientific Instruments 39.4 (1968), pp. 576–583. doi: 10.1063/1.1683435.
eprint: https://doi.org/10.1063/1.1683435. url: https://doi.org/
10.1063/1.1683435.

[5] P. J. Burt. “The Pyramid as a Structure for Efficient Computation”. In: Multires-
olution Image Processing and Analysis. Ed. by Azriel Rosenfeld. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1984, pp. 6–35. isbn: 978-3-642-51590-3. doi:
10.1007/978-3-642-51590-3_2. url: https://doi.org/10.1007/978-
3-642-51590-3_2.

[6] D.G. Lowe. “Object recognition from local scale-invariant features”. In: Proceedings
of the Seventh IEEE International Conference on Computer Vision. Vol. 2. 1999,
1150–1157 vol.2. doi: 10.1109/ICCV.1999.790410.

[7] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF”. In: 2011
International Conference on Computer Vision. 2011, pp. 2564–2571. doi: 10.1109/
ICCV.2011.6126544.

77

https://doi.org/10.1145/2024724.2024805
https://doi.org/10.1145/2024724.2024805
https://doi.org/10.1145/2024724.2024805
https://tssmicroscopy.com/instruments/categories/scanning-electron-microscopes/
https://tssmicroscopy.com/instruments/categories/scanning-electron-microscopes/
https://doi.org/10.1063/1.1683435
https://doi.org/10.1063/1.1683435
https://doi.org/10.1063/1.1683435
https://doi.org/10.1063/1.1683435
https://doi.org/10.1007/978-3-642-51590-3_2
https://doi.org/10.1007/978-3-642-51590-3_2
https://doi.org/10.1007/978-3-642-51590-3_2
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544

[8] Michael D Abràmoff, Paulo J Magalhães, and Sunanda J Ram. “Image processing
with ImageJ”. In: Biophotonics international 11.7 (2004), pp. 36–42.

[9] Hanchuan Peng. “Bioimage informatics: a new area of engineering biology”. In:
Bioinformatics 24.17 (July 2008), pp. 1827–1836. issn: 1367-4803. doi: 10 .
1093/bioinformatics/btn346. eprint: https://academic.oup.com/
bioinformatics/article-pdf/24/17/1827/16882564/btn346.pdf.
url: https://doi.org/10.1093/bioinformatics/btn346.

[10] Swarup Bhunia et al. “Hardware Trojan Attacks: Threat Analysis and Coun-
termeasures”. In: Proceedings of the IEEE 102.8 (2014), pp. 1229–1247. doi:
10.1109/JPROC.2014.2334493.

[11] Bernhard Lippmann et al. “Integrated Flow for Reverse Engineering of Nanoscale
Technologies”. In: Proceedings of the 24th Asia and South Pacific Design Automation
Conference. ASPDAC ’19. Tokyo, Japan: Association for Computing Machinery,
2019, 82–89. isbn: 9781450360074. doi: 10.1145/3287624.3288738. url:
https://doi.org/10.1145/3287624.3288738.

[12] Marc Fyrbiak et al. “Hardware reverse engineering: Overview and open challenges”.
In: 2017 IEEE 2nd International Verification and Security Workshop (IVSW). 2017,
pp. 88–94. doi: 10.1109/IVSW.2017.8031550.

[13] Michael Bajura et al. “Imaging Integrated Circuits with X-ray Microscopy”. In:
Apr. 2011.

[14] Junjing Deng et al. “Nanoscale x-ray imaging of circuit features without wafer
etching”. In: Phys. Rev. B 95 (10 2017), p. 104111. doi: 10.1103/PhysRevB.
95.104111. url: https://link.aps.org/doi/10.1103/PhysRevB.95.
104111.

[15] Shahed E. Quadir et al. “A Survey on Chip to System Reverse Engineering”.
In: J. Emerg. Technol. Comput. Syst. 13.1 (Apr. 2016). issn: 1550-4832. doi:
10.1145/2755563. url: https://doi.org/10.1145/2755563.

[16] Raul Quijada et al. “Large-Area Automated Layout Extraction Methodology for
Full-IC Reverse Engineering”. In: Journal of Hardware and Systems Security 2.4
(2018), pp. 322–332. issn: 2509-3436. doi: 10.1007/s41635-018-0051-4. url:
https://doi.org/10.1007/s41635-018-0051-4.

[17] Sebastian Wallat et al. “Highway to HAL: Open-Sourcing the First Extendable
Gate-Level Netlist Reverse Engineering Framework”. In: Proceedings of the 16th
ACM International Conference on Computing Frontiers. CF ’19. Alghero, Italy:
Association for Computing Machinery, 2019, 392–397. isbn: 9781450366854. doi:
10.1145/3310273.3323419. url: https://doi.org/10.1145/3310273.
3323419.

[18] Pramod Subramanyan et al. “Reverse Engineering Digital Circuits Using Structural
and Functional Analyses”. In: IEEE Transactions on Emerging Topics in Computing
2.1 (2014), pp. 63–80. doi: 10.1109/TETC.2013.2294918.

78

https://doi.org/10.1093/bioinformatics/btn346
https://doi.org/10.1093/bioinformatics/btn346
https://academic.oup.com/bioinformatics/article-pdf/24/17/1827/16882564/btn346.pdf
https://academic.oup.com/bioinformatics/article-pdf/24/17/1827/16882564/btn346.pdf
https://doi.org/10.1093/bioinformatics/btn346
https://doi.org/10.1109/JPROC.2014.2334493
https://doi.org/10.1145/3287624.3288738
https://doi.org/10.1145/3287624.3288738
https://doi.org/10.1109/IVSW.2017.8031550
https://doi.org/10.1103/PhysRevB.95.104111
https://doi.org/10.1103/PhysRevB.95.104111
https://link.aps.org/doi/10.1103/PhysRevB.95.104111
https://link.aps.org/doi/10.1103/PhysRevB.95.104111
https://doi.org/10.1145/2755563
https://doi.org/10.1145/2755563
https://doi.org/10.1007/s41635-018-0051-4
https://doi.org/10.1007/s41635-018-0051-4
https://doi.org/10.1145/3310273.3323419
https://doi.org/10.1145/3310273.3323419
https://doi.org/10.1145/3310273.3323419
https://doi.org/10.1109/TETC.2013.2294918

[19] Michael Werner et al. “Reverse Engineering of Cryptographic Cores by Structural
Interpretation Through Graph Analysis”. In: 2018 IEEE 3rd International Veri-
fication and Security Workshop (IVSW). 2018, pp. 13–18. doi: 10.1109/IVSW.
2018.8494896.

[20] Yiqiong Shi et al. “Extracting functional modules from flattened gate-level netlist”.
In: 2012 International Symposium on Communications and Information Technolo-
gies (ISCIT). 2012, pp. 538–543. doi: 10.1109/ISCIT.2012.6380958.

[21] J.L. White et al. “Efficient algorithms for subcircuit enumeration and classification
for the module identification problem”. In: Proceedings 2001 IEEE International
Conference on Computer Design: VLSI in Computers and Processors. ICCD 2001.
2001, pp. 519–522. doi: 10.1109/ICCD.2001.955082.

[22] L Reimer. “Scanning Electron Microscopy: Physics of Image Formation and Micro-
analysis, Second Edition”. In: Measurement Science and Technology 11.12 (2000),
pp. 1826–1826. doi: 10.1088/0957-0233/11/12/703. url: https://doi.
org/10.1088/0957-0233/11/12/703.

[23] H Seiler. “Secondary electron emission in the scanning electron microscope”. In:
Journal of Applied Physics 54.11 (1983), R1–R18. doi: 10.1063/1.332840.
eprint: https://doi.org/10.1063/1.332840. url: https://doi.org/
10.1063/1.332840.

[24] Michael T. Postek and András E. Vladár. “Does Your SEM Really Tell the
Truth?-How Would You Know? Part 4: Charging and its Mitigation”. eng. In:
Proceedings of SPIE–the International Society for Optical Engineering 9636 (2015).
28663665[pmid], 963605 (October 21, 2015); doi:10.1117/12.2195344 Text Size: A
A A. issn: 0277-786X. doi: 10.1117/12.2195344. url: https://pubmed.
ncbi.nlm.nih.gov/28663665.

[25] Goldstein J.I. et al. “Electron-Beam-Specimen Interactions”. In: Scanning Electron
Microscopy and X-Ray Microanalysis. Springer, Boston, MA, 1981, pp. 53–122.
isbn: 978-1-4613-3273-2. doi: https://doi.org/10.1007/978-1-4613-
3273-2_3.

[26] F. Timischl, M. Date, and S. Nemoto. “A statistical model of signal–noise in scanning
electron microscopy”. In: Scanning 34.3 (2012), pp. 137–144. doi: https://doi.
org/10.1002/sca.20282. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/sca.20282. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/sca.20282.

[27] J. HEJNA. “Noise coefficients of backscattered electron detectors for low voltage
scanning electron microscopy”. In: Journal of Microscopy 252.1 (2013), pp. 35–
48. doi: https://doi.org/10.1111/jmi.12066. eprint: https://
onlinelibrary.wiley.com/doi/pdf/10.1111/jmi.12066. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/jmi.12066.

79

https://doi.org/10.1109/IVSW.2018.8494896
https://doi.org/10.1109/IVSW.2018.8494896
https://doi.org/10.1109/ISCIT.2012.6380958
https://doi.org/10.1109/ICCD.2001.955082
https://doi.org/10.1088/0957-0233/11/12/703
https://doi.org/10.1088/0957-0233/11/12/703
https://doi.org/10.1088/0957-0233/11/12/703
https://doi.org/10.1063/1.332840
https://doi.org/10.1063/1.332840
https://doi.org/10.1063/1.332840
https://doi.org/10.1063/1.332840
https://doi.org/10.1117/12.2195344
https://pubmed.ncbi.nlm.nih.gov/28663665
https://pubmed.ncbi.nlm.nih.gov/28663665
https://doi.org/https://doi.org/10.1007/978-1-4613-3273-2_3
https://doi.org/https://doi.org/10.1007/978-1-4613-3273-2_3
https://doi.org/https://doi.org/10.1002/sca.20282
https://doi.org/https://doi.org/10.1002/sca.20282
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sca.20282
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sca.20282
https://onlinelibrary.wiley.com/doi/abs/10.1002/sca.20282
https://onlinelibrary.wiley.com/doi/abs/10.1002/sca.20282
https://doi.org/https://doi.org/10.1111/jmi.12066
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jmi.12066
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jmi.12066
https://onlinelibrary.wiley.com/doi/abs/10.1111/jmi.12066
https://onlinelibrary.wiley.com/doi/abs/10.1111/jmi.12066

[28] Naresh Marturi, Sounkalo Dembélé, and Nadine Piat. “Scanning electron microscope
image signal-to-noise ratio monitoring for micro-nanomanipulation.” In: The Journal
of Scanning Microscopies. (2014), pp. 1–11. doi: 10.1002/sca.21137. url:
https://hal.archives-ouvertes.fr/hal-01051309.

[29] W. Z. Wan Ismail et al. “Reducing charging effects in scanning electron microscope
images by Rayleigh contrast stretching method (RCS)”. In: Scanning 33.4 (2011),
pp. 233–251. doi: https://doi.org/10.1002/sca.20237. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/sca.20237. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/sca.20237.

[30] Kazuhiko Suzuki and Eisaku Oho. “Special raster scanning for reduction of charg-
ing effects in scanning electron microscopy”. In: Scanning 36.3 (2014), pp. 327–
333. doi: https://doi.org/10.1002/sca.21112. eprint: https://
onlinelibrary.wiley.com/doi/pdf/10.1002/sca.21112. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/sca.21112.

[31] Mark Tsuchida. µManager. https://micro- manager.org/. (Visited on
08/27/2021).

[32] Joe Chalfoun et al. “MIST: Accurate and Scalable Microscopy Image Stitching
Tool with Stage Modeling and Error Minimization”. In: Scientific Reports 7.1
(2017), p. 4988. issn: 2045-2322. doi: 10.1038/s41598-017-04567-y. url:
https://doi.org/10.1038/s41598-017-04567-y.

[33] Stephan Preibisch, Stephan Saalfeld, and Pavel Tomancak. “Globally optimal stitch-
ing of tiled 3D microscopic image acquisitions”. In: Bioinformatics 25.11 (Apr. 2009),
pp. 1463–1465. issn: 1367-4803. doi: 10.1093/bioinformatics/btp184.
eprint: https://academic.oup.com/bioinformatics/article-pdf/
25/11/1463/950295/btp184.pdf. url: https://doi.org/10.1093/
bioinformatics/btp184.

[34] Martin Schobert. Degate. https://degate.org/status.html. (Visited on
07/02/2021).

[35] Martin Schobert Dorian Bachelot. Degate. https : / / github . com /
DegateCommunity/Degate/. (Visited on 07/02/2021).

[36] Texplained. Texplained-ChipJuice-Presentation-English-2019. https://www.
texplained . com / download / chipjuice - presentation. (Visited on
07/02/2021).

[37] Embedded Security Group. HAL - The Hardware Analyzer. https://github.
com/emsec/hal. 2019.

[38] Johannes Schindelin et al. “Fiji: an open-source platform for biological-image
analysis”. In: Nature Methods 9.7 (2012), pp. 676–682. issn: 1548-7105. doi: 10.
1038/nmeth.2019. url: https://doi.org/10.1038/nmeth.2019.

80

https://doi.org/10.1002/sca.21137
https://hal.archives-ouvertes.fr/hal-01051309
https://doi.org/https://doi.org/10.1002/sca.20237
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sca.20237
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sca.20237
https://onlinelibrary.wiley.com/doi/abs/10.1002/sca.20237
https://doi.org/https://doi.org/10.1002/sca.21112
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sca.21112
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sca.21112
https://onlinelibrary.wiley.com/doi/abs/10.1002/sca.21112
https://onlinelibrary.wiley.com/doi/abs/10.1002/sca.21112
https://micro-manager.org/
https://doi.org/10.1038/s41598-017-04567-y
https://doi.org/10.1038/s41598-017-04567-y
https://doi.org/10.1093/bioinformatics/btp184
https://academic.oup.com/bioinformatics/article-pdf/25/11/1463/950295/btp184.pdf
https://academic.oup.com/bioinformatics/article-pdf/25/11/1463/950295/btp184.pdf
https://doi.org/10.1093/bioinformatics/btp184
https://doi.org/10.1093/bioinformatics/btp184
https://degate.org/status.html
https://github.com/DegateCommunity/Degate/
https://github.com/DegateCommunity/Degate/
https://www.texplained.com/download/chipjuice-presentation
https://www.texplained.com/download/chipjuice-presentation
https://github.com/emsec/hal
https://github.com/emsec/hal
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019

[39] David Hörl et al. “BigStitcher: reconstructing high-resolution image datasets of
cleared and expanded samples”. In: Nature Methods 16.9 (2019), pp. 870–874. issn:
1548-7105. doi: 10.1038/s41592-019-0501-0. url: https://doi.org/
10.1038/s41592-019-0501-0.

[40] Joe Chalfoun. “A power stitching tool”. In: SPIE Newsroom (2014).
[41] Timothy Blattner et al. “A hybrid CPU-GPU system for stitching large scale optical

microscopy images”. In: 2014 43rd International Conference on Parallel Processing.
IEEE. 2014, pp. 1–9.

[42] Anna Wójcicka and Zygmunt Wróbel. “The Panoramic Visualization of Metallic
Materials in Macro- and Microstructure of Surface Analysis Using Microsoft Image
Composite Editor (ICE)”. In: Information Technologies in Biomedicine. Ed. by
Ewa Piętka and Jacek Kawa. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 358–368. isbn: 978-3-642-31196-3.

[43] Georg von Arx. Stitching distortion-free mosaic images for QWA using PTGui.
https://www.wsl.ch/fileadmin/user_upload/WSL/Services_
Produkte/Software_Apps/Roxas/ptgui_quickguide.pdf. Feb. 2017.
(Visited on 05/07/2021).

[44] Teorex. How to Seamlessly Stitch Microscope Images Together. https://www.
photostitcher.com/how-to-stitch-microscope-images.html. (Vis-
ited on 05/07/2021).

[45] Ahmad P. Tafti et al. “A comparative study on the application of SIFT, SURF,
BRIEF and ORB for 3D surface reconstruction of electron microscopy images”.
In: Computer Methods in Biomechanics and Biomedical Engineering: Imaging &
Visualization 6.1 (2018), pp. 17–30. doi: 10.1080/21681163.2016.1152201.
eprint: https://doi.org/10.1080/21681163.2016.1152201. url:
https://doi.org/10.1080/21681163.2016.1152201.

[46] Hsiang-Jen Chien et al. “When to use what feature? SIFT, SURF, ORB, or A-
KAZE features for monocular visual odometry”. In: 2016 International Conference
on Image and Vision Computing New Zealand (IVCNZ). 2016, pp. 1–6. doi: 10.
1109/IVCNZ.2016.7804434.

[47] Ebrahim Karami, Siva Prasad, and Mohamed Shehata. Image Matching Using
SIFT, SURF, BRIEF and ORB: Performance Comparison for Distorted Images.
2017. arXiv: 1710.02726 [cs.CV].

[48] Nabeel Khan, Brendan McCane, and Steven Mills. “Better than SIFT?” In: Machine
Vision and Applications 26.6 (2015), pp. 819–836. issn: 1432-1769. doi: 10.1007/
s00138-015-0689-7. url: https://doi.org/10.1007/s00138-015-
0689-7.

[49] Shimiao Li. “A review of feature detection and match algorithms for localization
and mapping”. In: IOP Conference Series: Materials Science and Engineering
231 (2017), p. 012003. doi: 10.1088/1757- 899x/231/1/012003. url:
https://doi.org/10.1088/1757-899x/231/1/012003.

81

https://doi.org/10.1038/s41592-019-0501-0
https://doi.org/10.1038/s41592-019-0501-0
https://doi.org/10.1038/s41592-019-0501-0
https://www.wsl.ch/fileadmin/user_upload/WSL/Services_Produkte/Software_Apps/Roxas/ptgui_quickguide.pdf
https://www.wsl.ch/fileadmin/user_upload/WSL/Services_Produkte/Software_Apps/Roxas/ptgui_quickguide.pdf
https://www.photostitcher.com/how-to-stitch-microscope-images.html
https://www.photostitcher.com/how-to-stitch-microscope-images.html
https://doi.org/10.1080/21681163.2016.1152201
https://doi.org/10.1080/21681163.2016.1152201
https://doi.org/10.1080/21681163.2016.1152201
https://doi.org/10.1109/IVCNZ.2016.7804434
https://doi.org/10.1109/IVCNZ.2016.7804434
https://arxiv.org/abs/1710.02726
https://doi.org/10.1007/s00138-015-0689-7
https://doi.org/10.1007/s00138-015-0689-7
https://doi.org/10.1007/s00138-015-0689-7
https://doi.org/10.1007/s00138-015-0689-7
https://doi.org/10.1088/1757-899x/231/1/012003
https://doi.org/10.1088/1757-899x/231/1/012003

[50] D. G. Lowe. “Object recognition from local scale-invariant features”. In: Proceedings
of the Seventh IEEE International Conference on Computer Vision. Vol. 2. 1999,
1150–1157 vol.2. doi: 10.1109/ICCV.1999.790410.

[51] Edward Rosten and Tom Drummond. “Machine Learning for High-Speed Corner
Detection”. In: Computer Vision – ECCV 2006. Ed. by Aleš Leonardis, Horst
Bischof, and Axel Pinz. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 430–443. isbn: 978-3-540-33833-8.

[52] Michael Calonder et al. “BRIEF: Binary Robust Independent Elementary Features”.
In: Computer Vision – ECCV 2010. Ed. by Kostas Daniilidis, Petros Maragos, and
Nikos Paragios. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 778–792.
isbn: 978-3-642-15561-1.

[53] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF”. In: Proceed-
ings of the 2011 International Conference on Computer Vision. IEEE Computer
Society. 2011, pp. 2564–2571.

[54] Paul L. Rosin. “Measuring Corner Properties”. In: Computer Vision and Image
Understanding 73.2 (1999), pp. 291 –307. issn: 1077-3142. doi: https://doi.
org/10.1006/cviu.1998.0719. url: http://www.sciencedirect.com/
science/article/pii/S1077314298907196.

[55] C. Ding and X. Tang. “The Cross-Correlation of Binary Sequences With Opti-
mal Autocorrelation”. In: IEEE Transactions on Information Theory 56.4 (2010),
pp. 1694–1701. doi: 10.1109/TIT.2010.2040883.

[56] Margaret J. Mayston, Linda M. Harrison, and John A. Stephens. “A neurophysio-
logical study of mirror movements in adults and children”. In: Annals of Neurology
45.5 (1999), pp. 583–594. doi: 10.1002/1531-8249(199905)45:5<583::
AID-ANA6>3.0.CO;2-W. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/1531-8249%28199905%2945%3A5%3C583%3A%3AAID-
ANA6%3E3.0.CO%3B2-W. url: https://onlinelibrary.wiley.com/
doi/abs/10.1002/1531-8249%28199905%2945%3A5%3C583%3A%3AAID-
ANA6%3E3.0.CO%3B2-W.

82

https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/https://doi.org/10.1006/cviu.1998.0719
https://doi.org/https://doi.org/10.1006/cviu.1998.0719
http://www.sciencedirect.com/science/article/pii/S1077314298907196
http://www.sciencedirect.com/science/article/pii/S1077314298907196
https://doi.org/10.1109/TIT.2010.2040883
https://doi.org/10.1002/1531-8249(199905)45:5<583::AID-ANA6>3.0.CO;2-W
https://doi.org/10.1002/1531-8249(199905)45:5<583::AID-ANA6>3.0.CO;2-W
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1531-8249%28199905%2945%3A5%3C583%3A%3AAID-ANA6%3E3.0.CO%3B2-W
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1531-8249%28199905%2945%3A5%3C583%3A%3AAID-ANA6%3E3.0.CO%3B2-W
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1531-8249%28199905%2945%3A5%3C583%3A%3AAID-ANA6%3E3.0.CO%3B2-W
https://onlinelibrary.wiley.com/doi/abs/10.1002/1531-8249%28199905%2945%3A5%3C583%3A%3AAID-ANA6%3E3.0.CO%3B2-W
https://onlinelibrary.wiley.com/doi/abs/10.1002/1531-8249%28199905%2945%3A5%3C583%3A%3AAID-ANA6%3E3.0.CO%3B2-W
https://onlinelibrary.wiley.com/doi/abs/10.1002/1531-8249%28199905%2945%3A5%3C583%3A%3AAID-ANA6%3E3.0.CO%3B2-W

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Methodology
	Structure of the Work

	Background
	Integrated Circuit Reverse Engineering
	Scanning Electron Microscopy
	Image Stitching

	State-of-the-Art Stitching Software
	IC Reverse Engineering Software
	Image Stitching Software

	Image Registration Algorithms
	Feature Detection Algorithms
	Template Matching algorithms

	Evaluation of Image Registration Algorithms
	Image Sets
	Methodology
	Evaluation Results

	Automated Parameter Determination
	Parameter Determination Using Match Score Sum
	Parameter Determination Using Match Score Mean
	Parameter Determination for Cross-Covariance Using Phase Correlation
	Conclusion for Parameter Determination

	Global Stitching Algorithms
	Version 1: Maximum Score
	Version 2: Offset Statistics
	Version 3: Match Multiple Neighbor Tiles
	Version 4: Match Multiple Neighbor Tiles With Added Offset Statistics

	Global Stitching Evaluation
	Image Sets
	Evaluation Methodology
	Evaluation Results for Exact Offset Count and Absolute Offset Deviation
	Preselection for Manual Evaluation
	Manual Evaluation Results
	Discussion

	Conclusion and Future Directions of Work
	Detailed Evaluation Results for Image Registration Algorithms
	List of Figures
	List of Tables
	Bibliography

