
Network Security Challenges in Android Applications

Abstract—The digital world is in constant battle for
improvement - especially in the security field. Taking in
considerations the revelations from Edward Snowden about
the mass surveillance programs conducted by the governmen-
tal authorities, the number of users that raised awareness
is constantly increasing. More and more users agree that
additional steps must be taken to ensure the fact that
communications will remain private as intended in the first
place. Taking in consideration the ongoing transition in the
digital world, there are already more mobile phones than
people on this planet. According to [19] there are around
7 billion active cell phones by 2014 out of which nearly
2 billion are smartphones. Simply, the use of smartphones
could open a great security hole. The most common problem
when it comes to Android applications is the common misuse
of the HTTPS protocol. Having this in mind, this paper
addresses the current issues when it comes to misuse of the
HTTPS protocol and proposes possible solutions to overcome
this common problem. In this paper we evaluate the SSL
implementation in a recent set of Android applications and
present some of the most common missuses. The goal of this
paper is to raise awareness to current and new developers
to actually consider the security as one of their main goals
during the development life cycle of applications.

Keywords-Android; Android security; SSL; smartphones;
network security;

I. INTRODUCTION

Nowadays, the more frequent use of smartphones raises
a discussion about the actual security level that is offered
to the users. The use of smartphones becomes a part
of every ones daily routines with all those services of-
fered. Accordingly, the network utilization notices drastic
changes. A vast majority of users are accessing the Internet
via smartphones and tablets. Application markets such as
the official Google Play Store1 offer the users different
applications with a broad spectrum of functionalities. A
large part of the applications available in the Google Play
Store require access to the Internet. The most common
way for achieving this is by making use of the HTTP and
HTTPS protocols. In this paper we analyze a subset of
3K applications chosen from the pool of the most recent
Android applications from 2014 regarding the correct
implementation of the HTTPS protocol. Although the
misuse of the HTTPS is known issue and there are al-
ready some publicly available solutions for this particular
problem [16], [20], developers tend to trade the security
for the design and usability of applications. Such security
holes render the user an easy target for attackers, which
could easily lead to stealing of sensitive information or
act as an entry point for more sophisticated attacks. We
discovered that a large number of the application present in
the Android market have a broken implementation of the

1Google Play Store, play.google.com

HTTPS protocol. Moreover it was staggering to discover
that some of these applications actually provide banking
services. Furthermore we found applications that are not
transferring the data over HTTPS, instead they use HTTP
for data transfer. This indicated that user credentials such
as usernames and passwords are sent in plain text and the
consequences from this are more than obvious. Therefore
we value the results from this paper as a base for our future
work aimed at dynamic on-device analysis for Android
applications. This work could significantly enhance the
overall security of the applications presented by its capa-
bility to dynamically detect and replace insecure libraries
with their secure equivalent. Our analysis confirmed that
wrong use of SSL is still a problem that is present in
Android applications. A summary of the obtained results
can be found below:

• 22.85% of the tested applications contain broken
Trust Managers

• 8.9% contain partially broken Trust Manager
• 14.16% contain broken Hostname Verifier
• 3.3% contain partially broken Hostname Verifier
• 0.07% contain broken SSL Errors
• 29.75% contain partially broken SSL Errors

The paper is organized as following: Section 2 provides
the Background information on Android security concepts
along with the related work. In Section 3 an overview of
the Android SSL implementation is presented followed by
the discussion of the currently available analysis methods
in Section 4. Section 5 presents the middleware frame-
works that can be used for dynamic interception and
replacement of code. Finally, the results are presented in
Section 6 followed by conclusion and planned future work.

II. BACKGROUND AND RELATED WORK

In this section we provide a brief overview of the
security concepts used in Android. The goal of this section
is to provide the reader with the theoretical fundamentals
regarding the security concepts used in Android applica-
tions. These concepts aim to provide:

• Assurance that personal user data will remain private
• Keeping particular system resources protected
• Limited environment for applications to execute

In order to achieve the previously stated goals, the Android
operating system provides different levels of security,
which can be classified as:

• Kernel security
• Using sandboxing techniques to enforce separate ex-

ecution environments for different applications
• Providing secure communication between processes
• Mandatory signing requirement for every application

• The permission model
Just like every other widespread commercial product,

Android itself has been attracting a lot attention from
researchers in the field of security. To this day, different
security aspects of the Android security model have been
thoroughly researched, contributing to the discovery of
critical vulnerabilities [36]. Most of the research is aimed
at the coarse permission model, the general aspects of An-
droid security, over-privileged applications and detection
of malware. We refer the interested reader to Enck et al.
[24], Vidas et al. [23] and Tabassum et al. [25] for further
information and a good overview of the overall security
model as well as the attack vectors in Android. Shabtai et
al. [26] propose a number of security solutions for threats
to the Android platform that were previously identified.

A. Application Sandboxing

This approach to system hardening provides every ap-
plication with its own identification number (ID) and limits
the environment in which certain code can be executed.
The goal behind this idea is to improve the security by
isolating the application in order to prevent outside mal-
ware, intruders, system resources and other applications
from interfering with the protected application. However,
Davi et al. [27] presents a privilege escalation attack
performed during runtime that shows the ineffectiveness
of the sandboxing feature.

B. Secure IPC

The secure interprocess communication is achieved via
the Binder, which is a remote procedure call mecha-
nism responsible for transferring the in-process and cross-
process calls from i.e. Intents and Content Providers.
Being the lowest level of communication that transfers
information to the kernel, Tam et al. [31] propose Cop-
perDroid2, a novel analysis framework that leverages these
low level calls for reconstruction of the application behav-
ior in order to detect certain vulnerabilities.

C. Application-Defined and User Granted Permissions

Android uses a mandatory permission model. When an
application wants to use certain services, this must be
clearly stated in the manifest file. This means that upon
installation the user will be notified which requirements
are necessary for that particular application. Regarding
HTTPS, Android does not have a separate permission that
clearly specifies the use of this protocol. Instead everything
is grouped into one global permission that allows access
to the Internet3. Dhama et al. [34] give a good overview of
the security challenges and general use of the permissions
used in Android Applications. Furthermore there has been
much effort in researching the permission model and
over-privileged applications that could lead to significant
privacy issues and data theft (cmp. [28], [29], [30]). We

2CopperDroid Online Sandbox - http://copperdroid.isg.rhul.ac.uk/
copperdroid/

3Internet Permission - <uses-permission
Android:name="Android.permission.INTERNET/̈>

will not argue whether this permission approach could be
improved because we have to take in consideration the
mental model of the people, who in most of the cases do
not pay attention to the permission warnings. Even if the
users pay attention to these warnings it is arguable whether
non-technophile users are sufficiently familiar with the
presented terms, or the resulting consequences.

III. OVERVIEW OF ANDROID SSL

Regarding the fact that HTTPS is the only meaning-
ful protection mechanism for Internet communication in
Android and taking into consideration the fact that the
number of applications that require access to the Internet is
constantly rising, in this paper we will evaluate the current
state of HTTPS implementations in Android applications.

A. HTTPS and SSL/TLS

HTTP over SSL/TLS, or more commonly known as
HTTPS, is a data transmission protocol which transfers
normal HTTP traffic over SSL4 or TLS5. In this paper we
will not discuss the weaknesses of SSL/TLS, but focus on
the implementation of this protocol in Android applica-
tions instead. The goal of this protocol is to provide protec-
tion against eavesdropping on the connections. The most
common and widely known attack scheme against this is
the man-in-the-middle attack. This attack is supposed to
intercept, modify, block and/or redirect the traffic. There
are several known approaches that eliminate the possibility
of this attack. The most common approach is by using
X.509 Certificates. This means that the host, which in our
case is the application and the server that the application is
communicating with, are mutually authenticated with the
use of certificates. In most of the client server setups, the
server obtains a X.509 certificate containing its public key
and it is signed by certain known and trusted Certificate
Authority (CA). In order for a communication to start,
the server’s certificate is then sent to the client when the
client is trying to establish a communication. During the
time of this exchange of the certificate, there is still an
opportunity for an attacker to perform a man-in-the-middle
attack. However, there are certain techniques explained in
the following sections that are intended to prevent this
from happening. Furthermore, the most common use of
certificates can be divided as:

• Form of identification
• Public key used for encryption of data

Basically the overall goal of HTTPS is to bind the
communication between the legitimate server and host.
An HTTPS client checks the validity of the parameters
presented in the certificate, like the common name. If some
of the parameters do not match a warning is displayed.
In order for this check to succeed, the Android operating
system comes with preloaded root certificates from trusted
vendors. According to [35], the most common trusted
certificate authorities to be found are:

• Comodo SSL with 33.6% market share
4Secure Sockets Layer
5Transport Layer Security

• Symantec (who owns VeriSign, Thawte and
GeoTrust) with 33.2% market share.

• Go Daddy with 13.2% market share
• GlobalSign with 11.3% market share
• DigiCert with 2.9% market share

B. SSL implementation in Android

The open approach that Google has towards Android de-
velopers enables flexibility when it comes to implementa-
tion of certain functionalities. This enables implementation
of advanced custom security concepts but also results in
significant security challenges. The Android SDK provides
the developers with several opportunities for implemen-
tation of the networking part of the application. This
includes use of javax.net, java.net, org.apache.http and An-
droid.net packages. However, the actual implementation is
left to the developer. This means that developers should
ensure proper implementation of these packages in order
to achieve secure transport over the network. Fahl et al.
[21] identify and classify the common missuses of SSL
as:

• Trusting all Certificates
• Allowing all Hostnames
• Trusting many CAs
• Mixed mode or No SSL implementation.

All of the specified misuses are usually located in the
checkServerTrusted [6] function that is actually respon-
sible for implementation and validation of the certificates.
Trusting all Certificates is the most common mistake
that is implemented. This means that the TrustManager
interface is set to accept all of the certificates without
any check. This is achieved by overriding the interface
to return null, which leads to the fact that the certificates
are completely ignored. Furthermore, the hostname veri-
fication is the second most common mistake to be found.
This means that there has to be a check that will determine
whether the certificate is issued for the particular address
that the application is trying to connect to. In other words,
if an application is trying to establish communication to
url: www.Android.com a certificate issued for any other
domain must not be accepted and the communication has
to be terminated. Although this issue is commonly found
under the first category also, still there are cases where
just the hostname verification is misused beside the fact
that there are some certificate checks implemented. We
argue that the mixed mode implementation is directly an
SSL problem since there are many developers that tend
to mix secure with insecure communication. Although not
directly affected, the lack of indicators for secure com-
munication such as the small lock found in the browsers
renders the SSL implementation in Android with limited
visibility and makes it a far more easy target to SSL
stripping attacks as presented in [33]. In general, the
wrong use of HTTPS is still a big issue. The next chapter
will give an overview of the analysis methods used to
detect these problems in applications.

IV. ANALYSIS METHODS

To this day there are different techniques that are used
for analysis of Android applications. The most common
way to achieve this is through code analysis also known as
static analysis [18] and dynamic [12] or behavioral analy-
sis. Regarding the fact that all applications are packaged,
to perform static analysis the use of additional tools such
as apktool, dex2jar and jd-gui [11] is required. On the
other hand dynamic analysis is performed in a manner that
the application is executed in its own environment while its
behavior is tracked. A good comparison of the currently
available online sandboxes for dynamic instrumentation
is presented by Neuner et al. [32]. However, the two
approaches stated above have certain drawbacks. First in
order to perform these analyses we have to obtain an
actual apk file for the application, which is not a problem
for a small set of applications but for a larger set of
applications it can be difficult. Therefore we aim for a
concept called on-device analysis, which eliminates the
need of retrieving the actual apk file from the device in the
first place. Regarding the fact that modern analysis tools
are separately installed on machines where the analyses
are performed, we focus on analysis tools that could be
installed and performed on the device. Upon extensive
research we identified four frameworks that can be used as
base for our on-device analysis concept. These frameworks
serve as a base for development of certain modules that
can be used for different purposes. These frameworks
are usually used to make custom enhancements to the
Android operating system, like changes to the graphical
user interface (GUI). Furthermore we identified the use
of Cydia Substrate to bypass security features such as
certificate pinning. In the following section we describe
the frameworks and their functionality.

V. FRAMEWORKS FOR DYNAMIC INSTRUMENTATION

Having all this in mind, our goal is to find a way to
detect these anomalies and repair them automatically. This
means that everything has to be done on the phone and in
the background, eliminating the need for user interaction
since a vast majority of the Android users does not actually
have any technical background. We have discovered that
the only way to achieve this is to find a way to intercept
certain functions and/or libraries and check their result.
This implies that everything has to be done during runtime.
Therefore we need a framework that can be used for
dynamic instrumentation of Android applications. For our
use case, the framework needs to provide functionalities
for interception and injection of code during execution. We
have identified and examined the following 4 frameworks:

• Cydia Substrate [7]
• Xposed Framework [8]
• PIN for Android [9]
• DDI Dynamic Dalvik Instrumentation for Android

[10]
All of the aforementioned frameworks have much in

common. The essential requirement is root access to the
phone since all of the frameworks need access to the

app_process executable, which is the heart of the
Android system. The technical details of the frameworks
include modification, or more specific, extending the
app_process executable to load a JAR file on startup.
The classes of the loaded file are implemented in every
process including the system services and according to
this are able to act with their powers. Their power is
demonstrated via the hooking functionality that allows
the developer to hook, intercept and even modify code
during execution. Therefore we render these frameworks
as promising candidates that could be used in on-device
analysis. Furthermore, we see potential use of these frame-
works for manipulation of libraries. The fact that they need
root access in order to be able to operate is an promising
indication that certain unstable or insecure system libraries
could be detected and replaced with more stable and
secure versions. To this day we have not noticed the use
of these frameworks for security purposes. Therefore, we
plan to evaluate their functionality in deeper detail and
decide to what extent these frameworks can be used to
enhance system security. Table 1 classifies the features of
each of the frameworks.

VI. CASE STUDY

We conducted static analysis on a set of 3K appli-
cations from Google Play Store[14] regarding the SSL
implementation. We used the malloDroid[15] script to
detect the number of applications with a broken SSL
implementation. We found out that there is still a large
number of applications that require the Internet permission
and should have used SSL for data transmission, but
instead the overridden trust manager was set to return
null, eliminating the use of SSL in the first place and
thereby accepting all of the certificates. Furthermore, just
observing the names of the classes that override the default
trust manager leads us to the fact that SSL is sometimes
absolutely misused. We have encountered classes such
as FakeTrustManager, FakeSSLTrustManager, AcceptAll-
TrustManager etc. The implementation of these classes
was following the pattern given in Listing 1 and Listing
2.

The results from the 3842 tested applications are listed
in the Table II. A broken TrustManager was found in 848
application which is around 22% of the whole set of appli-
cations. Furthermore we discovered that 544 applications
have a bad implementation of the HostnameVerifier. This
brings us to the fact that use of these applications could
easily lead to data theft. Taking the number of tested
applications into consideration, in accordance with the
total number of applications present in the Google Play
Store, we believe that the real number of application that
have SSL misuse problems is much higher.

It is more than obvious that there is still a major
problem present in Android regarding secure network
communication. Apart from the fact that many techniques
such as certificate pinning and forced use of HTTPS
exist, developers still tend to ignore the important role
that SSL has in Android. Fahl et al. [21] showed the

public class TrustManager implements
javax.net.ssl.X509TrustManager{

public TrustManager(){
return;
}

public void
checkClientTrusted(java.security.cert.

X509Certificate[]p1, String p2){
return;
}

public void
checkServerTrusted(java.security.cert.

X509Certificate[]p1, String p2){
return;
}

public
java.security.cert.X509Certificate[]
getAcceptedIssuers(){

return 0;
}

}

Listing 1. Template of a FakeTrustManager

class NetworkManager$1 implements
javax.net.ssl.HostnameVerifier {

NetworkManager$1()
{

return;
}

public boolean verify(String p2,
javax.net.ssl.SSLSession p3)

{
return 1;

}
}

Listing 2. Template of a broken Hostname Verification

state of 13500 applications chosen back in 2012th and
compared to those results we can conclude that there is not
much improvement regarding the use of SSL in Android
applications.

VII. CONCLUSION

The results presented in this paper brought us the real
picture regarding the state of HTTPS usage for network
communication in the analysed subset of the most down-
loaded 3K Android applications from 2014. We think
that this problem is a result of multiple drawbacks from
different aspects among which we render the lack of
knowledge, both from developers and users, as one of the
main reasons for this problem. Taking the digitalization
of the world around us into consideration, like the use of
services that provide online banking etc., it is essential
to fill the gap in security produced by the misuse of the
SSL protocol. Keeping sensitive data private should be the
main goal of anyone developing applications intended for
smartphone use.

Java Code Native Code Class Loading Method Calls
Interception Security

Xposed " " " "

Cydia Substrate " " " " "

PIN " "

DDI " " "

Table I
CHARACTERISTICS OF DYNAMIC INSTRUMENTATION FRAMEWORKS FOR ANDROID

Broken Possibly Broken
Trust Manager 848 342

Hostname Verifier 544 127
SSL Error 3 1143

Table II
RESULTS

VIII. FUTURE WORK

Our future work is aimed at evaluation of the aforemen-
tioned frameworks in order to distinguish to what extent
these middleware interfaces can be used for improving the
overall security in Android. It is clear that this approach
has potential use in improving the security of Android
applications on a global scale regarding the fact that it
could be later on embedded into the official version of the
Android operating system. We think that this approach, if
adapted adequately to specific needs, can lead to elimina-
tion of certain problems such as introduction of separate
permissions for services identified as a potential point for
information leaks.

ACKNOWLEDGMENT

The authors would like to thank... more thanks here

REFERENCES

[1] Statistical information for Google Play
Store, http://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/,
February 2015

[2] Android Permission Model, http://developer.Android.com/
guide/topics/security/permissions.html

[3] Stack Overflow, http://stackoverflow.com/

[4] Telegram Messenger, https://www.telegram.org/

[5] WhatsApp, https://www.whatsapp.com/

[6] X.509 TrustManager, http://developer.Android.com/
reference/javax/net/ssl/X509TrustManager.html

[7] Cydia Substrate, http://www.cydiasubstrate.com/

[8] Xposed Framework, http://repo.xposed.info/module/de.robv.
Android.xposed.installer

[9] PIN for Android, https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool

[10] Dynamic Dalvik Instrumentation toolkit, https://github.
com/crmulliner/ddi

[11] Tools for decompiling Android applications, http://forum.
xda-developers.com/showthread.php?t=1755243

[12] Andrubis: A tool for Analyzing Unknown Android
Applications, http://blog.iseclab.org/2012/06/04/
andrubis-a-tool-for-analyzing-unknown-Android-applications-2/

[13] Cydia Substrate SDK - http://www.cydiasubstrate.com/id/
73e45fe5-4525-4de7-ac14-6016652cc1b8/

[14] Google Play Store, https://play.google.com/store

[15] MalloDroid, https://github.com/sfahl/mallodroid

[16] OWASP, https://www.owasp.org/index.php/Certificate
and Public Key Pinning

[17] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia,
and Lujo Bauer. 2014. Android taint flow analysis for app
sets. In Proceedings of the 3rd ACM SIGPLAN Interna-
tional Workshop on the State of the Art in Java Program
Analysis (SOAP ’14). ACM, New York, NY, USA, 1-6.
DOI=10.1145/2614628.2614633 http://doi.acm.org/10.1145/
2614628.2614633

[18] tienne Payet and Fausto Spoto. 2011. Static analysis of
Android programs. In Proceedings of the 23rd international
conference on Automated deduction (CADE’11), Nikolaj
Bjrner and Viorica Sofronie-Stokkermans (Eds.). Springer-
Verlag, Berlin, Heidelberg, 439-445.

[19] Mobile Phone Users, http://www.digitaltrends.com/mobile/
mobile-phone-world-population-2014/

[20] Your app shouldnt suffer SSLs problems, Moxie
Marlinspike, http://www.thoughtcrime.org/blog/
authenticity-is-broken-in-ssl-but-your-app-ha/

[21] Sascha Fahl, Marian Harbach, Thomas Muders, Lars
Baumgrtner, Bernd Freisleben, and Matthew Smith. 2012.
Why eve and mallory love Android: an analysis of
Android SSL (in)security. InProceedings of the 2012
ACM conference on Computer and communications se-
curity (CCS ’12). ACM, New York, NY, USA, 50-61.
DOI=10.1145/2382196.2382205 http://doi.acm.org/10.1145/
2382196.2382205

[22] Hubbard, J.; Weimer, K.; Yu Chen, ”A study of SSL
Proxy attacks on Android and iOS mobile applications,”
Consumer Communications and Networking Conference
(CCNC), 2014 IEEE 11th , vol., no., pp.86,91,
10-13 Jan. 2014,doi: 10.1109/CCNC.2014.6866553,
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
6866553&isnumber=6866537

[23] Timothy Vidas, Daniel Votipka, and Nicolas Christin. 2011.
All your droid are belong to us: a survey of current Android
attacks. In Proceedings of the 5th USENIX conference on
Offensive technologies (WOOT’11). USENIX Association,
Berkeley, CA, USA, 10-10.

[24] William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri. 2011. A study of Android application
security. In Proceedings of the 20th USENIX conference
on Security (SEC’11). USENIX Association, Berkeley, CA,
USA, 21-21.

[25] Tabassum, G., Pandit, S., Ghosh, N. (2014, December).
Android Application Security. In Journal of Emerging Tech-
nologies and Innovative Research (Vol. 1, No. 7 (December-
2014)). JETIR.

[26] Asaf Shabtai, Yuval Fledel, Uri Kanonov, Yuval Elovici,
Shlomi Dolev, and Chanan Glezer. 2010. Google Android: A
Comprehensive Security Assessment. IEEE Security and Pri-
vacy 8, 2 (March 2010), 35-44. DOI=10.1109/MSP.2010.2
http://dx.doi.org/10.1109/MSP.2010.2

[27] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
and Marcel Winandy. 2010. Privilege escalation attacks on
Android. In Proceedings of the 13th international conference
on Information security (ISC’10), Mike Burmester, Gene
Tsudik, Spyros Magliveras, and Ivana Ili (Eds.). Springer-
Verlag, Berlin, Heidelberg, 346-360.

[28] Bugiel, S.; Davi, L.; Dmitrienko, A.; Fischer, T.; Sadeghi,
A.-R. Shastry, B. (2012), Towards Taming Privilege-
Escalation Attacks on Android., in ’NDSS’ , The Internet
Society

[29] Georgios Portokalidis, Philip Homburg, Kostas Anagnos-
takis, and Herbert Bos. 2010. Paranoid Android: versa-
tile protection for smartphones. In Proceedings of the
26th Annual Computer Security Applications Conference
(ACSAC ’10). ACM, New York, NY, USA, 347-356.
DOI=10.1145/1920261.1920313 http://doi.acm.org/10.1145/
1920261.1920313

[30] William Enck, Machigar Ongtang and Patrick McDaniel.
2009. On lightweight mobile phone application certification.
In Proceedings of the 16th ACM conference on Computer
and communications security (CCS ’09). ACM, New York,
NY, USA, 235-245. DOI=10.1145/1653662.1653691 http://
doi.acm.org/10.1145/1653662.1653691

[31] CopperDroid: Automatic Reconstruction of Android Mal-
ware Behaviors, Kimberly Tam, Salahuddin J. Khan, Aristide
Fattori, and Lorenzo Cavallaro 22nd Annual Network and
Distributed System Security Symposium, NDSS 2015 San
Diego, California, USA, February 8-11, 2015

[32] Sebastian Neuner and Victor Van der Veen and Martina
Lindorfer and Markus Huber and Georg Merzdovnik and
Martin Mulazzani and Edgar R. Weippl, ”Enter Sandbox:
Android Sandbox Comparison,” in Proceedings of the IEEE
Mobile Security Technologies Workshop (MoST), 2014

[33] Marlinspike M. More Tricks For Defeating SSL In Practice.
In Black Hat USA, 2009.

[34] S. Dhama, An Overview of Security Challenges of An-
droid Apps Permissions, International Journal of Information
and Computation Technology. ISSN 0974-2239 Volume 4,
Number 4 (2014), pp. 373-380 International Research
Publications House http://www.irphouse.com/ijict.htm

[35] Certificate authorities, Wikipedia, http://en.wikipedia.org/
wiki/Certificate authority

[36] Tarun Mall, Samarth Gupta, Critical Evaluation of Security
Framework in Android Applications: Android-level security
and Application-level security, International Research Jour-
nal of Computers and Electronics Engineering (IRJCEE) Vol.
2, Iss. 1, DEC 2014 IRJCEE-120914-TM-2014-I-1

